Prime Computer, Inc.

DOC10057-1LA

Advanced Programmer’s
Guide

Volume IIT
Command Environment

Revision 19.4

)

Advanced Programmer's

Guide
Volume I11I:

Command Environment

First Edition

by

James Craig Burley
and

Alice Landy

This guide documents the software operation of the Prime Computer and
its supporting systems and utilities as implemented at Master Disk
Revision Level 19.4.3 (Rev. 19.4.3).

Prime Computer, Inc.
Prime Park
Natick, Massachusetts 01760

COPYRIGHT INFORMATION

The information in this document is subject to change without notice
and should not be construed as a commitment by Prime Computer, Inc.
Prime Computer, Inc. assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Copyright © 1985 by
Prime Computer, Inc.
Prime Park
Natick, Massachusetts 01760

PRIME, PRIME, and PRIMOS are registered trademarks of Prime Computer,
Inc.

PRIMENET, RINGNET, Prime INFORMATION, PRIMACS, MIDASPLUS, Electronic
Design Management System, EDMS, PDMS, PRIMEWAY, Prime Producer 100,
INFO/BASIC, PST 100, PwW200, BPW150, 2250, 9950, THE PROGRAMMER'S
COMPANION, and PRISAM are trademarks of Prime Computer, Inc.

CREDITS
Project Support Len Bruns
Margaret Taft
Editorial Support Mary Callaghan
Graphic Support Marjorie Clark
Mike Moyle
Bob Stuart
Production Support Michelle Hoyt
Document Preparation Nancy Cormier
Mary Mixon

ii

J

r
PRINTING HISTORY — Advanced Programmer's Guide,
Volume III: Command Envirorment
Edition Date Number Software Release
Preliminary Edition January 1985 DOC9229-1LA 19.4.0
First Edition November 1985 DOCl10057-1LA 19.4.3
In document numbers, L indicates loose-leaf.
’».
r QUSTOMER SUPFORT CENTER
Prime provides the following toll-free mnumbers for custamers in the
United States needing service: in the United States needing service:
1-800-322-2838 (within Massachusetts) 1-800-541-8888 (within Alaska)
1-800-343-2320 (within other states) 1-800-651-1313 (within Hawaii)
HOW TO ORDER TECHNICAL DOCUMENTS
Follow the instructions below to obtain a catalog, price list, and
information on placing orders.
United States Only International
Call Prime Telemarketing, Contact your local Prime
toll free, at 800-343-2533, subsidiary or distributor.
Monday through Friday,
8:30 a.m. to 8:00 p.m. (EST)
~
~

iii

Contents

ABOUT THIS BOOK ix

Prime Documentation Conventions X
Calling Sequence Conventions xi

1 INTRODUCTION TO THE COMMAND ENVIRCONMENT

Aspects of the Command Envirorment 1-2
Interactive Users 1-2
Command Input (COMINPUT) Files 1-3
Cammand Procedure Languagde

(CPL) Programs 1-4
User-written Programs 1-6
User-written Functions 1-7
Applications 1-7

Types of Programs 1-8
Internal Commands 1-9
External Commands 1-10

The Cammand Interface 1-10

Limits on Program Invocation 1-13

Key Modules in the Cammand

Envirorment 1-16
The Listener 1-17
The Command Prampter 1-19
The Command Line Reader 1-19
The Abbreviation Processor 1-19
The Command Processor 1-20
The Expression Evaluator 1-20
The Cammand Features Decoder 1-21
The Cammand Preprocessor 1-21
The Program Invokers 1-22
The Default On-unit 1-22

2 (QOMMAND LINE PROCESSING

Step 1: Handling the Command

Separator Character 2-3
Step 2: Evaluation of Function

and CPL Variable References 2-4
Step 3: Removal of Null Tokens 2-4
Step 4: Determination of Command

Name 2-4
Step 5: Determination of Command

Type 2-5

Step 6: Determination of Command

Iteration Features 2-5
Step 7: Expansion of Simple
Iteration 2-5

Step 8: Expansion of Treewalking 2-6
Step 9: Expansion of Wildcard

Specifications 2-6
Step 10: Expansion of Name

Generation Patterns 2=7
Invocation 2-8

3 PROGRAM EPF CALLING SEQUENCE

Types of Calling Sequences 3-2
Program Calling Sequence 3-3
Command Calling Sequence 3-3
Command Function Calling
Sequence 3-6
The ALSSRA Subroutine 3-9
The ALCSRA Subroutine 3-10
Detailed Cammand Calling
Sequence 3-15
Command Processing Information 3-19
Complete Calling Sequence 3-26

4 INVOKING PROGRAMS FROM WITHIN PROGRAMS

Commands, Programs, and Functions 4-2

Deciding Which Interface to Use 4-6
The CP$ Subroutine 4-9
Using CP$ to Invoke a Command
or Program 4-9
Using CPS to Invoke a Function 4-13
Error Codes From CP$ 4-17
The EPFSRJIN Subroutine 4-18
Error Codes Fram EPFSRUN 4-26
The EPFSINVK Subroutine 4-27
Error Codes From EPFS$ Subroutines 4-40
The FRESRA Subroutine 4-45
Sample Programs 4-47
If a Program Invokes Itself 4-54
Terminal Input and Output 4-55

vi

5 THE COMMAND PROCESSOR STACK
What the Command Processor

Stack Is Used For 5-1
Cammand Levels 5-2
The Listener 5-2
The RDY Command 5-4
The RELEASE_LEVEL Cammand 5-5
The DUMP_STACK Command 5-11
The INITIALIZE COMMAND ENVIRONMENT
Command 5-12
The REENTER Cammand 5-13
Mini-Command Level 5-15
What Control-P Actually Does 5-16
If Your Program Catches QUITS 5-16

6 THE RECURSIVE QOMMAND ENVIRCNMENT

What Is a Recursive Resource? 6-1
What Is a Dynamic Resource? 6-2
What Is a Static Resource? 6-2
The Cache Attach Point as a

Static Resource 6-2
Other Static Resources 6-3

INDEX X-1

vii

About
This Book

The Advanced Programmers's Guide is intended for programmers who are
experienced with Prime 50 Series ™ systems, have read the Prime User's
Guide (DOC4130-4LA) and Programmer's Guide to BIND and EPFs
(DOCB691-11A) , are familiar with the Subroutines Reference Guide
(D0C3621-190) and its first update package (UPD3621-313a), are
experienced in at least one high-level 1language supplied by Prime
(preferrably PL1G or FIN), and who have an understanding of the
architecture of Prime systems as described in the Prime 50 Series
Technical Summary (DOC6904-191) and in the System Architecture Guide.

This quide is divided into several volumes.

e Volume 0 of this guide describes new features of interest to
readers of this gquide. It also describes standard error codes
used by PRIMDS™, along with their messages and meanings.

e Volume I describes Executable Program Formats (EPFs).

e Volume II describes the PRIMOS File System.

e Volume III (this volume) describes the PRIMDS Command
Enviroment,

Designed for systems-level programmers, this gquide describes the
lowest-level interfaces supported by PRIMOS and its utilities,
Higher-level interfaces not described in this gquide include:

e Language—-directed 1/0

e The applications library (APPLIB)

ix

e The sort packages (VSRILI and MSORIS)
e Data management packages (such as MPLUSLB and PRISAMLIB)
e Other subroutine packages

All the above interfaces are described in other manuals, such as
language reference manuals and the Subroutines Reference Guide.

This guide documents the low-level interfaces for use by programmers
and engineers who are designing new products, such as language
compilers, data management software, electronic mail subsystems,
utility packages, and so on, Such products are themselves higher-level
interfaces, typically used by other products rather than by end users,
and therefore must use same or all of the low-level interfaces
described in this guide for best results.

Because of the technical content of the subjects presented in this
quide, it is expected that this guide will be regularly used only by
project leaders, design engineers, and technical supervisors rather
than by all programmers on a project. Most of the information in this
guide deals with interfaces to PRIMIS that are typically used only in
small portions of a product, and with overall product design issues
that should be considered before coding begins. Once the product is
designed and the PRIMDS interfaces are designed and coded, a typical
product can then be written by programmers whose knowledge of these
issues is minimal. Of course, this statement is predicated on the
assumption that widely accepted programming practices, such as modular,
or structured, programming, functional and design specifications, and
thorough unit debugging and testing, are employed.

PRIME DOCUMENTATION CONVENTIONS

The following conventions are used in oommand formats, statement
formats, and in examples throughout this document. Examples illustrate
the uses of these commands and statements in typical applications.
Terminal input may be entered in either uppercase or lowercase letters.

Convention Explanation Example
UPPERCASE In command formats, words SLIST

in uppercase indicate the
actual names of commands,
statements, and keywords.
These can be entered in
either uppercase or
lowercase letters,

lowercase

abbreviations

underlining
in
examples

Brackets
[1]

Braces

{ }

Ellipsis

Parentheses
()

Hyphen

In command formats, words LOGIN user-id
in lowercase letters indicate
items for which the user must

substitute a suitable value.

If a command or statement LoGQuT

has an abbreviation, it is

indicated by underlining.

In cases where the command

or directive itself SET QUOTA

contains an underscore, the SQ
abbreviation is shown below

the full name, and the name

and abbreviation are placed

within braces.

OK, RESUME MY PROG
This is the output
of MY_PROG.CPL |
OK'

In examples, user input
is underlined but system
prampts and output are not.

Brackets enclose one or SPOOL [-LIST]
more optional items. -CANCEL
Choose none, one, or >
more of these items.

Braces enclose a list CLOSE [filename l
of items. Choose one ALL

and only one of these

items.,

An ellipsis indicates that item—-x[,item-y]...
the preceding item may be
repeated.

In command or statement DIM array (row,col)
formats, parentheses must
be entered exactly

as shown.

Wherever a hyphen appears SPOOL -LIST
as the first letter of an

option, it is a required

part of that option.

CALLING SEQUENCE CONVENTIONS

This guide provides many illustrations of calling sequences as a handy
reference for readers while they read the guide., These illustrations
are not intended to replace the Subroutines Reference Guide for
complete reference information on subroutines. For example, this guide
may not show all of the various forms of invoking a subroutine if only
a few forms apply to the topic being discussed.

Calling sequences of subroutines, programs, and functions are
illustrated in this quide in summary form. Each calling sequence
occupies one full page. The subroutine, or procedure, name is listed
in the middle of the page, followed by dummy parameter names, separated
by commas, listed in parentheses. This is the basic calling sequence
for the procedure.

Above the calling sequence are the input arquments; below the calling
sequence are the output arguments., Arrows are drawn to or fram the
dummy parameter names to indicate the flow of information and also to
visually connect parameter names to the information on the parameters.
Each input or output parameter includes the following information:

® A description of the argument
e The datatype of the argument

For the description of the argqument, a short description may be given;
in same cases, such as for keys, a value or a list of choices of values
is given; occasiomally, an illustration of the format of the input or
output argument is provided., The choice is designed to prove the most
useful when the reader uses the subroutine in one or more programs
samewhat frequently.

For the datatype of the argument, a datatype description language is
defined specifically for this guide. Readers must convert the datatype
description language used here to the appropriate language. This quide
often includes PL/I-G or FORTRAN versions of structures in addition to
the datatype description language.

In addition to the arguments, or parameters, for the procedure,
procedures that are functions return a function value, In this case,
the value and its datatype is illustrated below the name of the
procedure itself. ‘The meaning and datatype of the function value is
essentially the same as for parameters,

There are two main purposes to the format used in this guide to
illustrate calling sequences:

e To illustrate the calling sequence for a single type of function
performed by a procedure

e To show the relationships between interdependent parameters in a
calling sequence

The first purpose 1is addressed by separating information on a
multipurpose subroutine such as PRWFS$S into several different calling
sequence descriptions, one for reading a file, another for writing a
file, another for positioning a file, and so on.

The second purpose is addressed by providing dotted lines between
related arguments in calling sequence illustrations. Most often, such
relationships involve a character string parameter whose length is
specified by another parameter in the calling sequence. Another
example is the size of an array parameter that is specified by another
parameter,

Data S

The following datatypes, and their PL/I-G and FORTRAN equivalents, are
used throughout this gquide:

Datatype PL/I-G FORTRAN
HALF INT FIXED BIN(15) INTEGER*2
FULL INT FIXED BIN(31) INTEGER*4
n STRING CHARACTER (n) INTEGER*2 ((ntl)/2)

<=n STRING = (HARACTER(n) VARYING INTEGER*2 ((n+3)/2)
2 ((n+3)/2)

n BIT BIT(n) INTEGER*2 ((n+15)/16) w/masking
PTR POINTER and ADIR() INTEGER*2 (3) and LOC()
STRUC (see Note 1) (see Note 1)
ARRAY (n) (see Note 2) (see Note 2)
Notes

1. Structures are usually illustrated in the same figure or in
another figure, or their declarations are provided in a
page near the figure. They are also known as "record" data
types in other languages.

2. Arrays are either a constant length (n is indicated in
parentheses) or a varying length set controlled by another
parameter or by a subfield in another parameter. Varying
length arrays have dotted lines from the word ARRAY to the
parameter (or its subfield) that controls the length of the
array.

If you are unsure as to the meaning of a keyword, arrow, or other
illustrative mark, oonsult the Subroutines Reference Guide for more
precise and complete information on the subroutine or data structure.

xiii

Reys

Some Prime-supplied interfaces take a key argument as an input-only
argument., Your program sets key to specify the precise operation to be
performed by the interface. 1In most figures that involve a key
arqument, only a list of valid (or appropriate) values for the argument
is provided in the form of the keyword names for the keys; these
keyword names, once learned, are easy to associate with the
corresponding function. For example, the k$read key specifies a read
operation,

When the construction of a key is oomplex, two or more lists of
keywords are often shown, enclosed in braces, with + signs to indicate
addition. As with command formats, the braces indicate that you should
pick one keyword from each list in braces; the + signs indicate that
you should add, in the program, the resulting keywords. For example,
your program might specify a key value of kS$rdwr+k$ndamt+kSgetu.

To define key definition keywords for your program, which have names
beginning with K$, use a %INCLUDE or SINSERT statement to insert the
appropriate SYSQOM>KEYS.INS.lanquage file into your program. See the
Subroutines Reference Guide for more information on this topic.

Standard Error Code

Most interfaces include a standard error code as a parameter. This is
a HALF INT value returned by the interface to indicate the degree of
success encountered by the interface. When provided by an interface,
your program should always check this value to ensure that it is 0
(zero) after each call to the interface — a value of 0 means a
successful call. Other values can mean either an error or Jjust a
condition worth noting. Volume 0 contains a list of all standard error
codes along with descriptions of their various meanings within PRIMOS.,

To define standard error code keywords for your program, which have
names beginning with E$, use a $INCLUDE or SINSERT statement to insert
the appropriate SYSCOM>ERRD, INS.lanquage file into your program. See
the Subroutines Reference Guide for more information on this topic.

Side Effects

Where appropriate, the side effects of an interface are listed in the
lower left-hand corner of the corresponding figure.

xiv

J

)

)

General Coding Guidelines

When writing programs that use any Prime-supplied subroutines, observe
the following gquidelines to ensure that your programs continue
functioning normally on subsequent revisions of PRIMOS:

® Reserved or undefined information returned to your program by a
Prime-supplied interface subroutine must be ignored. For
example, if a 16-bit halfword contains one defined bit and
fifteen reserved bits, your program must mask off the fifteen
reserved bits before analyzing the halfword to determine the
value of the one defined bit.

e Reserved or undefined information passed by your program to a
Prime—-supplied interface must ocontain all zeroes, except where
otherwise specified.

Introduction to the
Command
Environment

The PRIMOS command enviromment is a collection of subroutines and
interfaces that provide a single, flexible, and efficient command
interface for:

Interactive users, who issue commands and then uswally wait for
a response before issuing subsequent commands

Command input (QOMINPUT) files, which contain simple command
scripts

Cammand Procedure Language (CPL) programs, which contain a mix
of commands and CPL directives; these interpreted programs can
issue commands and make decisions based on the results of those
commands

User—written programs, which may or may not wish to take
advantage of certain features of the command envirorment such as
wildcarding, iteration, treewalking, and name generation

User-written functions, which can be used just like CPL command
functions in that they can return a string value to the caller

Applications, which may invoke other commands, programs, and
functions that are external to the application

1-1 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

Because the oommand enviromment allows the mixing and matching of its
many features, you can build very powerful packages by combining
command enviromment features, For example, you may be able to build a
powerful application wusing small, easy-to-manage programs and
functions, instead of having to construct a single, large, monolithic
program,

This chapter introduces you to the features of the command enviromment
of particular interest to advanced programmers. It begins by examining
how the various aspects of the command enviromment serve the needs of
the six types of "users" listed above. It then discusses the three
types of program recognized by the command envirorment and the way in
which the command envirorment interfaces to each. It discusses
per-site limits that can be imposed on program invocation. Fimally, it
explains the structure of the ocommand enviromment by 1listing and
discussing the key modules of the command enviromment.

ASPECTS OF THE (OMMAND ENVIRONMENT

This section describes the types of users served by the ocommand
enviroment and the features of most interest to each. The command
enviromment features, themselves, are explained briefly in this
section; they are discussed in more detail later in this chapter.

Interactive Users

Interactive users are those users who enter commands at their
terminals; usually, they then wait for a response before issuing
subsequent commands. Their needs are:

e To know, as soon as possible, whether the command they issued
has succeeded

® To be able to issue powerful commands using the fewest possible
keystrokes

e To perform certain operations on multiple targets (such as a
group of files), without having to enter the same command
repeatedly

For these users, the command envirorment provides:
e An error-reporting facility with which programs can display
identical, and therefore familiar, error messages for identical
error conditions

e A command prompt that immediately lets the user know whether the
previous command succeeded (OK,) or failed (ER!)

First Edition 1-2

J

)

INTRODUCTION TO THE COMMAND ENVIRONMENT

e An abbreviation facility, whereby a user can specify that a
particular command or keyword is a substitute for a more lengthy
and perhaps more complicated oommand, keyword, or sequence of
commands and keywords

e A sophisticated command preprocessor that provides treewalking,
wildcarding, and iteration facilities; these allow a user to
easily specify sets of file system objects (either listed by the
user or related by name or by common parent directory) without
having to retype the command and its options for each specified
object

Interactive users who repeatedly issue a simple set of commands may use
command input files; such files are described in the next section.

Command Input (COMINPUT) Files

Command input files contain simple command scripts that, when invoked
by an interactive user via the COMINPUT command, substitute for the
user's interactive input of commands. Unlike an interactive user, a
command input file does not have the ability to "look" at the results
of a particular command and decide how to proceed next. The needs of a
command input file are:

® To be able to record output of the command input session for
later perusal by the user

e To be automatically stopped after a fatal error, so that
subsequent commands do not cause further problems

To support the needs of command input files, the command environment
provides:

e A command output facility (the COMOUTPUT command), allowing
command input and output to be written to a file as well as (or
instead of) to the user terminal

® An error-reporting facility that allows commands and programs to
indicate whether they completed successfully

® An error—detection facility that automatically suspends command
input upon detection of a fatal error

Although command input files are useful for simple command sequences
that change little or not at all between invocations, they do not
provide more sophisticated features, such as allowing a user to provide
one or more arguments to the command input file that modify its actions
or allowing the command file itself to choose a course of action
depending on the results of invoking a command or program. Prime's
gom?and Procedure Language (CPL), described next, provides these
eatures.

1-3 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: QOMMAND ENVIRONMENT

Cammand Procedure Language (CPL) Programs

A Command Procedure Language (CPL) program contains a combination of
cormands and CPL, directives, Commands, such as QOPY, F77, BIND, and
RESUME, typically perform the actual work of a CPL program., CPL
directives, such as &ARGS, &IF, &SET VAR, and &RETURN, control the
execution of commands within the program. CPL programs may use CPL
variables and functions throughout; both are similar to programming
language constructs in that they substitute actual values for
themselves at program runtime. CPL variables substitute values
assigned at program runtime, while function references invoke
PRIMOS-resident functions or call other programs at program runtime to
determine what values to substitute.

CPL programs are sametimes substituted for existing compiled programs;
for example, a CPL program may provide a program—use log or a more
user-friendly interface.

The needs of a CPL program are:
@ To be invoked just as if it were a compiled program

® To be able to record output of the CPL program session for later
perusal by the user or for 1later interpretation by the CPL

program

e To be able to execute PRIMS commands without repetition of the
PRIMDS OK, prompt, thus avoiding filling the user's screen with
OK, prampts

e To be able to intercept and analyze errors encountered by
commands and programs invoked by the CPL program, in order to
determine the next course of action

® To be able to report errors encountered by the CPL program to
the invoker of the program, in a form useful to both the
interactive user and to another program, either of which may
invoke the CPL program

® To be able to invoke other CPL programs

® To be able to return a value as a result of the CPL program when
the program is to be used as a function

To support the needs of CPL programs, the command envirorment provides:
e A program invocation interface (the RESUME command) that invokes
both compiled programs and CPL programs, depending upon which it

finds, so that the user is not necessarily aware of the type of
program being invoked

First Edition 1-4

INTRODUCTION TO THE (OMMAND ENVIRONMENT

e A command output facility (the QMOUTPUT ocommand), allowing
command input and output to be written to a file as well as (or
instead of) being written to the user termimal

e A command line reader that does not display PRIMOS prampts when
it is reading commands from a CPL program

® An error detection and interception directive (the &SEVERITY
directive) that allows a CPL program to intercept fatal command
or program errors without necessarily resulting in the abnormal
termination of the CPL program, and that allows the CPL program
to analyze the error code (the %SEVERITYS% variable) returned by
a command or program

® An error condition interception directive (the &N directive)
that allows a CPL program to intercept program runtime errors
(such as ACCESS VIOLATIONS$) in addition to program interrupts
(such as QUITS, and LOGOUTS) and that allows the CPL program to
clear the oondition or to oontinue the signaling of the
condition

® A directive (the &RETURN directive) that allows a CPL program to
return a severity code to the calling program, indicating
whether an error oondition was encountered, and to specify an
error message, indicating the mnature of the error, to be
displayed on the user's terminal.

e The ability to invoke other CPL programs via the RESUME ocommand
exactly as if they were compiled programs

@ A directive (the &RESULT directive) that allows a CPL program to
return a text string as the result of the CPL program, for use
when the CPL program is designed as a function

See the CPL User's Guide for complete information on how to write CPL
programs.

Because CPL provides many oconstructs found in structured programming
languages such as PL/I, it is useful for rapid development of utilities
and programs., In particular, CPL can be an appropriate language for
the development of a prototype utility. CPL programs tend to be easy
to understand and maintain because they are interpreted rather than
compiled and because the debugging of such programs is typically
straightforward (and is assisted by other CPL directives, such as
&DEBUG and &WATCH) .

However, most CPL programs run faster when corwerted to one of Prime's
compiled languages, such as PL/I-G. To ease the conversion of CPL
programs to other Prime-supplied languages, the oommand enviromment
provides compiled programs with the same abilities as CPL programs, as
described next.

1-5 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

User—-written Programs

User-written programs are compiled programs that are linked using
Prime's BIND, LOAD, or SEG linker and executed using the RESUME or SEG
command, These programs may or may not wish to take advantage of
certain features of the command enviromment such as wildcarding,
iteration, treewalking, and name generation. When it is called upon to
execute a program, the oommand enviromment detects which of its
features the program wishes to use. The needs of a user-written
program that interfaces to the command enviromment are:

e To be able to execute PRIMDS commands

® To be able to intercept and amalyze errors encountered by
commands and programs invoked by the program to determine the
next course of action

e To be able to report errors encountered by the program to the
invoker of the program, in a form useful to both the interactive
user and to another program, either of which may invoke the

program
e To be able to invoke other programs

® To be able to determine what command processing features, such
as wildcarding and iteration, are being used to invoke the

program

The command enviromment provides facilities to programs built as EPFs
that address all of the above needs., For static-mode programs, which
are linked via SEG or LOAD, the command enviromment provides a limited
set of facilities, Facilities provided by the command enviromment for
use by compiled programs are:

® An interface (the CP$ subroutine) to the command processor that
allows a running program to invoke a PRIMOS command, a CPL
program, or another compiled program

e A returned severity code from the CP$ subroutine interface that
represents the level of success encountered by the invoked
command or program

® A program interface that allows a program to indicate its 1level
of success by modifying a severity code variable, which was
passed to it when the program was invoked by the command
processor

® An interface (the ERRPR$ and ERTXTS subroutines) that allows a
program to display an error message corresponding to a standard
PRIMDOS error code, providing the user with oonsistent error
messages for similar errors

e An interface (the EPFSRUN subroutine) that allows a program to
invoke another program EPF

First Edition 1-6

INTRODUCTION TO THE COMMAND ENVIRONMENT

e A program interface that allows a program to determine, by
analyzing a structure passed to it by the command enviromment,
which command preprocessing features (such as wildcarding and
iteration) are involved in the invocation of the program

While compiled programs are generally built to perform same task and
not to return the results of a calculation, a program may be designed
to return a result to the invoker of the program. These programs,
called functions, are described next.

User-written Functions

Like CPL command functions, user-written functions return a string
value to the caller. A user-written function must be a program EPF;
it cannot be a static-mode program. (Any program EPF that returns a
string value to its caller is a function.) To allow the writing of
such functions, the command enviromment:

@ Provides an interface (the ALCSRA and ALSSRA subroutines) that
allows a program to allocate memory that is to ocontain the
returned text string

® Passes to a program a pointer that the program sets to point to
the returned text string allocated by ALCSRA or ALSSRA

® Provides an interface (the FRESRA subroutine) that allows a
program that calls a function, whether a CPL program or a
program EPF, to deallocate the memory associated with a returned
text string after using the string

Same programs may not fit into either the category of a program that
performs a task or the category of a program that is a function. Such
programs may invoke other programs, provide specially tailored user
interfaces, manage data bases, and so on. ‘These applications are
described next.

Applications

This guide uses the term application to describe a program that may
invoke other commands, programs, and functions that are external to the
application. In addition, an application may provide a user with a
specially tailored interface, such as an interactive menu-driven file
management system. The needs of an application are similar to the
needs of a user-written program, with the additionmal requirement that
it be able to invoke a function and be able to make use of the returned
value of that function.

1-7 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: QOMMAND ENVIRONMENT

The conmand enviromment allows a program to invoke a function by
returning to the calling program a pointer to a structure containing
the returned text string, In addition, the command enviromment
provides an interface (the FRESRA subroutine) that allows a program to
deallocate the structure containing the returned text string once it
has been used.

Applications may have additional requirements:

e To be able to repeatedly invoke a particular EPF without
repeatedly mapping and unmapping the EPF

e To be able to modify the procedure code of an EPF once it is in
memory, such as when an application allows interactive debugging
of an EPF

® To be able to retrieve information on an EPF, such as how many
procedures and segments it needs, its version number, the
version of BIND used to link the EPF, and so on

The command enviromment satisfies these requirements by providing an
EPF interface that oonsists of several subroutines which, called
separately, allow an application to exercise more control over how and
when an EPF is passed through its phases before being executed. (See
Volume I of this series for a description of the phases in the life of
an EPF,) Included in this interface is a subroutine, EPFS$CPF, that
allows a program to retrieve information on an EPF similar to that
displayed by the LIST EPF command.

TYPES OF PROGRAMS

Several interfaces exist between the ocommand enviromment and the
programs it handles. These interfaces differ in their ocomplexity and
in the capabilities each provides; each is designed to handle a

particular type of program.

To the command enviromment, a program is either a simple program, a
command, or a function.

A simple program is a program that does not take command line arguments
(such as filenames, options, and so on). Moreover, a simple program
does not indicate whether it succeeded or failed; it is always
presumed to succeed.

A cormand is a program that accepts command line arguments or that
indicates whether it succeeded or failed by returning a severity code,
calling SETRC$, or calling ERRPR$. Most commands both accept command
lines and return severity codes.

First Edition 1-8

INTRODUCTION TO THE (COMMAND ENVIRONMENT

A function is a command or program that returns a character string that
serves as the value of the function imnvocation. Most functions are
internal to PRIMS and are used by CPL programs, and are therefore
called CPL command functions.

Same of these internal functions are usable as commands. For example,
the DATE command function can be invoked as a function or as a program:

OK, TYPE 'It is '[DATE -DOW]', '[DATE —CAL]' at '[DATE —-AMPM]'.'
It is Tuesday, March 5, 1985 at 8:06 AM.

OK, DATE

05 Mar 85 08:06:20 Tuesday

OK,

Internal CPL. command functions, like internal PRIMOS commands, are not
stored on the disk as programs, but are part-of PRIMOS itself.,

Another distinction made by PRIMOS is whether a command is internal or
external. An internal command resides in PRIMOS itself rather than on
disk; therefore, it is always available for use by users and by
programs. An external command resides on disk, either in the top-level
directory named COMINCO (a historical name that stands for CoMmanDs,
Non—Chargeable, number 0) or elsewhere on disk, Because an external
command is a file on disk, you can:

e Delete the file, which makes it unavailable to users and
programs

o Change the name of the file, which also changes the name of the
command

e Create a new file, which creates a new command

@ Set access on the file, restricting its use to certain users,
which also restricts use of the command to those users

A program, command, or function can be either internal or external, but
not both. A few special internal commands are used to execute external
commands, and these internal commands are therefore treated specially
by the command enviromment.

Internal Commands

Internal commands, such as ATTACH and RESUME, are recognized by the
command processor as being internal. They cause certain subroutines
internal to PRIMDS to be invoked. CPL command functions, such as DATE
and ATTRIB, are also considered to be internal.

1-9 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

External Cammands

When you issue a command that is neither an internal PRIMOS command nor
an internal CPL ocommand function, PRIMOS 1looks in the top-level
directory named QMDNCO for a program with the same name as the command.
Programs in QMDNCO are called external commands., They are CPL, EPF, or
static-mode programs that have been placed in (MDNCO by Prime or by
your System Administrator.

Because external commands and programs differ only in where they are
stored, issuing the ED command is effectively the same as typing:

RESUME QMDNCO>ED

PRIMDS determines what type of program you are invoking by appending
various file suffixes to the program name and checking to see if a file
with the resulting name exists, The file suffix is then used to
determine what type of program is being invoked. The file names are
searched in the following order:

File Name Program Type
command-name , RUN EPF
command-name , SAVE static-mode
cammand-name , CPL CHL
command-name static-mode

Note

If you supply the .RUN, .CPL, or .SAVE suffix when you invoke a
program, PRIMOS searches for only that particular program. For
example, typing RESUME MYPROG.CPL only causes MYPROG.CPL to be
invoked as a CPL program; PRIMOS does not search for
MYPROG.RUN or MYPROG.CPL.RUN in this case.

THE CQOMMAND INTERFACE

Because PRIMOS includes the command processor, the interface between
the command processor and commands (programs) is defined by PRIMOS.
This interface is described in detail in Chapter 3. In summary, the
interface has five levels of ocomplexity:

1. Program invocation. The program being invoked takes no
arguments and returns no value; hence, it is a program, rather
than a function, and it ignores any command line passed to it.
No severity code is returned, so a severity code of 0
(successful completion) is assumed.

First Edition 1-10

")

J

J

)

INTRODUCTION TO THE (QOMMAND ENVIRONMENT

2. Camand invocation. The program being invoked accepts a
command line as an argument, and returns only a severity code;
hence, it is a command program, rather than a function.

3. Function invocation. The program being invoked accepts:
e A command line

e An indication of whether the program being invoked is
expected to return a value, used when the program can
run as a program or a function

Like commands, functions return severity codes.

When the program is invoked as a function, it also returns the
result of the function as a character string. It does this by
allocating a structure into which it places the returned value
‘and then returning a pointer to that structure.

4, Detailed command invocation. ‘The program accepts the same
information accepted by a ocommand plus a description of the
command state (including the command name, information on
whether wildcards, treewalking, and other command preprocessing
features have been selected, and so on). As with a command, a
detailed command returns a severity code.

5. Complete command invocation. The program accepts all of the
information accepted by both a function and a detailed command.

For most programs that invoke other programs, there are really only two
forms of invocation: command invocation and function invocation. In
general, programmers consider all five 1levels of ocomplexity listed
above only when designing program interfaces. For this design task,
the availability of several levels of complexity combines the greatest
amount of power with the ability to use simple interfaces when the
power is not needed.

If one program is being written to invoke another, the invoking program
does not need to concern itself with the level of ocomplexity in the
invoked program's interface. For example, suppose program A is to
invoke program B. Assume that B is a function, and A invokes it as a
carmand (that 1is, A does not ask for a returned text string). 1In this
case, A is askingB to do less than B is capable of doing. B
recognizes this and does not return a function value. On the other
hand, suppose that B is a command and that A invokes it as a function.
In this case, A asks B to do more than B is capable of doing. B will
not recognize this, while A will interpret the lack of result as a
successful invocation without any returned function value.

There are cases where the level of complexity is high; these generally

involve sophisticated combinations of function invocation, CPL local
variable pointers, and, sometimes, command line iteration.

1-11 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

The Command Line

An EPF accepts a command line as a character string in the calling
sequence of its main entrypoint. How the EPF interprets the command
line is entirely up to the programmer of the EPF., However, using the
standard PRIMOS command line processing subroutines such as CL$PIX is
recommended so that the EPF can take advantage of command line features
such as wildcarding, treewalking, and so on, without any special

programming,

The Severity Code

An EPF returns a severity code as a number in the calling sequence of
its main entrypoint. When a program calls another program, the calling
program interprets the severity code returned by the called program
however it chooses. No special action upon receiving a positive
severity code is required by PRIMS, although the calling program
typically takes corrective action or logs the error.

The Returned Character String

An EPF returns a character string by allocating memory for it, writing
it into the allocated memory, and returning a pointer to the memory in
the calling sequence of its main entrypoint. An EPF returns a value
only if the invoking program has requested it by setting to 'l'b a flag
in the calling sequence of the main entrypoint of the EPF.

The returned character string can be used by the caller. For example,

a program named USER ID might return the username of the invoking user.
USER_ID might be used in a CPL program as follows:

TYPE Your username is [RESUME PROGRAMS>USER_ ID]

Programs that return such text strings are called functions. They are
EPFs or CPL programs; a static-mode program cannot return a text
string.

First Edition 1-12

INTRODUCTION TO THE (OMMAND ENVIRONMENT

The Cammand Processing Information

An EPF obtains information on the command processing performed to
invoke it by accepting a structure as an argument in the calling
sequence of its main entrypoint. This structure, which is built by the
comand processor or by the invoking program, communicates the
following information:

e The command used to invoke the program EPF (the name of the
program)

e A pointer to CPL variables local to the CPL program that invoked
the program EPF or one of its ancestors

e Information on the iteration features and options enabled during
the invocation of the program EPF, such as wildcarding, object
type selection, treewalking, and so on

Most program EPFs that use the information in this structure are
probably going to use only the command name or the pointer to CPL local
variables. Only programs that determine their behavior according to
the manner in which they are invoked make use of information on
iteration features.

LIMITS ON PROGRAM INVOCATION

Each system enforces the following resource limits on the invocation of
programs from within programs or from command level:

e The limit on the maximum number of programs at a given command
level (program breadth)

e The limit of the maximum number of dynamic segments
® Resource limits on memory utilization

Each program EPF takes up at least one additiomal dynamic segment;
typically, each takes up two segments.

Your System Administrator sets limits on the number of programs you can
invoke fram within other programs at a given command level, and also on
the number of dynamic segments you can use. The LIST LIMITS command
displays these limits, in addition to limits on the number of command
levels and the number of static segments.

1-13 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

For example:

OK, LIST_LIMITS

Maximum number of command levels: 10

Maximum number of program invocations: 20
Maximum number of private static segments: 40
Maximum number of private dynamic segments: 50

OK,

You may also encounter situations in which, even though you are not
exceeding limits placed on your process by the System Administrator,
system~wide resources (such as segments) are exhausted., The remainder
of this section describes what happens when per-user limits are reached
and when system-wide resources are exhausted.

When Per—user Limits Are Reached

An attempt to exceed the 1limit on the maximum number of program
invocations causes CP$ or EPFSRUN to return an error code of ESECEB
(Exceeding command envirorment breadth).

Even if the program is successfully invoked, the 1limit on dynamic
segnents may be reached before the program acquires sufficient memory
to complete successfully; or, system resources may be exhausted before
this point., If the limit on dynamic segments, as set by your System
Administrator, is exceeded, one of several messages may be displayed.

Use the LIST SEGMENTS ocommand in oconjunction with the LIST LIMITS
command to determine how many dynamic segments you are using and how
many you can use.

For example, if you exceed the limit while PRIMDS is trying to resolve
a dynamic link to a library EPF that it is unable to map and initialize
due to insufficient memory, the following message is displayed:

Error: condition "LINKAGE ERRORS$" raised at 4000(3)/2101.
"Not enough segments." while attempting
dynamic link to entrypoint "SUBR" .

If the problem occurs while executing the external login program, the
message appears as in the following example:

Condition "LINKAGE_ERRORS" raised at 4000(3) /3354 while in External
Login. Please report this message to your system administrator.

First Edition 1-14

INTRODUCTION TO THE COMMAND ENVIRONMENT

If the system is unable to allocate process—class storage due to a lack
of sufficient dynamic segments, the following message is displayed:

No space available from process class storage heap.

The condition SYSTEM STORAGES is then raised, which may cause another
message to be displayed by the default omunit (or the onmrunit for
errors during external login).

A message you micht see if insufficient space is available for memory
allocation is:

STORAGE raised at 41(3) /112533
(insufficient space for ALLOCATE)

ERROR raised at 41(3)/112533
(no or-unit for STORAGE)

If the default onmunit can identify the program attempting the
allocation, the message appears as follows:

STORAGE raised in PATHS at 4355(3) /50541
(insufficient space for ALLOCATE)

ERROR raised in PATHS at 4355(3) /50541
(no on-unit for STORAGE)
ER!

If there is insufficient memory to map a program EPF to memory for
execution (as a result of a command, for example), the following
message is displayed:

Not enough segments. program—EPF-name (std$cp)
ER!

In same cases, the error occurs at a point in which PRIMDS cannot
recover without reinitializing your command enviromment, in which case
the following message informs you of this event:

User enviromment re-initialized. (FATALS)

1-15 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: QOMMAND ENVIRONMENT

Exceeding limits as set by your System Administrator usually means
that, to successfully run your program, you must persuade your System
Administrator to increase your limits., If this is not possible, you
must reduce the number of dynamic segments or program invocations used
by your program.

When System—-wide Resources Are Exhausted

Even if you do not reach your limits on program invocation or dynamic
segments, you may encounter a system—wide resource restriction., For
example, if the system runs out of segments, the following message is
displayed:

Error: condition "NO_AVAII, SEGSS" raised at 4464(3) /104425,

Another possibility is that the system could run out of disk storage
for virtual memory. For example:

Error: condition "PAGING_DEVICE_FULLS" raised at 4464(3) /104425,

In both cases, you should issue the ICE command and try running your
program again. ICE resets your stack history and returns all of your
segnents to the system—wide free segment pool. When you run your
program again at this point, you are using only those segments needed
by your program. If the condition recurs, then the system is unable to
run your program. This is normally a temporary condition.

If it seems that you cannot run your program without encountering such

resource restrictions, oontact your System Administrator about adding
segments and/or paging space to the system.

KEY MODULES IN THE COMMAND ENVIRONMENT

The command enviromment is made up of many subroutines and data
structures in PRIMOS. Same of these are explained in this section,
because an understanding of them may help you learn about making
sophisticated use of the command processor.

The key modules in the command enviromment are:

e The listener, which inputs commands from the user and executes
them

e The command prompter, which displays a prompt at the user's
terminal so that the user knows the system is awaiting input

First Edition 1-16

INTRODUCTION TO THE COMMAND ENVIRONMENT

e The command line reader, which reads commands from the user

e The abbreviation processor, which expands short character
sequences in a command line interactively input by the user and
replaces them with longer, more complex sequences

o The command processor, which executes commands

o The expression evaluator, which resolves, in a oommand line,
references to functions and to CPL variables

® The command features decoder, which determines whether each
command feature is enabled or inhibited for a particular command

e The command preprocessor, which performs all forms of iteration
(such as simple iteration, treewalking, wildcards) and name
generation

e The program invokers, each of which invokes a particular type of
program (internal, EPF, static-mode, or CPL)

o The default onunit, which is invoked for signaled conditions
that are not caught by the running program, and which is often
responsible for a new invocation of the listener

The actions of each of these key modules are summarized below. Not all
of these modules are necessarily invoked for each command line — the
command processor is able to detect whether a particular module, or set
of modules, can be skipped because the command line does not require
the features provided by that module. For example, suppose a command
line contains no wildcard characters (@, +, or °), no name generation
character (=), no hyphens (-) to indicate options, such as object type
selection options, and no parentheses to indicate simple iteration.
Then the command processor may choose to skip calling the command
preprocessor and may call the invoker modules directly instead.

The Listener

The listener is the crux of the command processor. It inputs commands
from the user by calling the command line reader, passes them from the
abbreviation processor, and executes them by calling the command
processor.

An invocation of the listener is called a ocommand level. Initially,
after you log in, you are placed at command level 1, which is the first
invocation of the listener on the stack. As you enter commands at
level 1, the listener executes them,

117 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

The listener also establishes an onmunit for the ANYS ocondition.
Therefore, if you type Control-P or if a program you execute encounters
an error such as an illegal instruction or an access violation, the
first invocation of the listener catches the condition signaled (QUITS,
ILLBEGAL,_INSTS, or ACCESS VIOLATIONS).

The default omrunit, named DF UNIT , responds to many of these
conditions by displaying a useful message and then invoking the
listener. This second invocation of the listener does not supersede
the first; instead, the first invocation remains suspended (due to the
interruption). The second invocation of the listener is command level
2 for the user.

For the most part, commands issued at command level 2 do not affect the
program that was running at command level 1. (Exceptions primarily
concern static mode programs, which do interfere with static mode
programs at lower levels.) ‘Therefore, when you have resolved the
error, you may return to command level 1 and continue execution of the
program at that level by issuing the START command. Alternatively, you
may return to command level 1 and abort execution of the program at
that level by issuing the RELEASE LEVEL command.

The primary purpose for this creation of new command levels is to allow
you to trace the cause of an interruption or program error while the
stack history of the program at command level 1 1is still maintained.
For example, you can use the DUMP_STACK command at command level 2 to
display stack frames for all procedures invoked between the signaling
of the oondition that caused the invocation of the default omrunit and
the bottan of the stack. (The display begins with the most recently
created condition frame still on the stack.)

An added benefit of this layering of command levels is that you can
interrupt a command, execute a different ocommand (or sequence of
commands), and then continue the interrupted command. However, such
cases may involve interactions that might prevent you from oontinuing
the interrupted command successfully.

Each invocation of the listener is aware of its invocation number,
which is also the command level number for the wuser., If this value
exceeds the maximum number of allotted command levels, the listener
displays an informative message and allows only mini-commands to be
entered, This state is called mini-command level. The limited set of
mini-commands are all internal commands, and they all either display
information on resources (current usage or limits) or reduce resources
used (by releasing command 1levels, removing programs from memory,
logging out, and so on). None of the mini-commands allow you to invoke
a program or to acquire an additiomal command level. In addition,
Control-P no longer causes the generation of an additiomal command
level; instead, it displays an error message and returns you to
mini-command level.

First Edition 1-18

INTRODUCTION TO THE COMMAND ENVIRONMENT

The Command Prampter

The command prompter is called by the listener to display a prampt on
the user's termminal so that the user knows that the system is ready and
waiting for another command. The listener selects a ready, warning, or
error prampt when it calls the prompter. (OK, is the default ready and
warning prompt, ER! is the default error prompt.) The chosen prompt
informs the user whether the most recently issued command completed
successfully.

The command prompter can also display long prompts, which provide more
information than the normal brief prampts. Information includes the
time of day, incremental CPU and I/0 time used by the user, and the
command level number.

The RDY command determines what prompts will be available for display;

used with no arquments, it calls the prompter and requests display of a
long ready prampt.

The Command Line Reader

The command line reader is called by the listener to read a command
line from the command input source, which may be the user's terminal, a
command input file, or a &DATA block in a CPL program., ‘The command
line reader performs terminal erase and kill key processing for
interactive input.

The Abbreviation Processor

After the listener has read a command line from the ocommand line
reader, the listener may pass the command line through the abbreviation
processor. It will do this if the input source is the user's terminal
and if the user and the System Administrator have both enabled
abbreviation processing.

Note

If the input source is a CPL program with abbreviation
processing enabled, then the CPL processor will pass the
command line through the abbreviation processor.

The abbreviation processor is a time-saving device for entering
commands. It expands short character sequences in a command line and
replaces them with longer, more complex sequences. It then returns the
resulting command 1line to the listener for further processing. Using
the ABBREV command, users define the particular expansions they
require, and enable and disable abbreviation processing.

1-19 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

The Command Processor

The listener then takes the command line and calls the command
processor with it. The command processor is another critical part of
the command enviromment.

The name of the ocommand processor is CP$, which is a subroutine that
may be invoked by user programs. In fact, CPS$ simply invokes STDSCP,
which is the standard command processor for PRIMDS. For the rest of
this chapter, the term "command processor" will refer to STDSCP.

The command processor controls all of the remaining processing of the
command line up to the point where the target program is actually
invoked., (When this processing is complete, the ocommand processor
executes the resulting command(s). It then returns to the listener,
which then prampts the user for the next command.)

The first step performed by the command processor is the splitting up
of the command line into separate command lines if the command
separator (;) has been used in the ocommand line. 'The command
processor then processes each of these split command lines, one at a
time,

For each split command line, the command processor passes the command
line through the expression evaluator. It then removes any null tokens
in the ocommand line. (A null token is a token consisting only of two
single quotes,)

Then the command processor parses the first token in the command line.
This is the ocommand name. It uses the command name to determine the
type of program being invoked and to decide which command processing
features are to be inhibited and which are to be enabled for that
particular command. It uses this information next, when it passes the
ocommand line to the command preprocessor along with the invoker module
appropriate to the type of program being invoked.

The command preprocessor handles the task of performing any iteration
(simple iteration, treewalking, wildcarding) and other preprocessing
(name generation, object type selection, and so on); it also calls the
appropriate invoker for the program each time it processes an iteration
of the command line.

The Expression Evaluator

The expression evaluator is called by the standard command processor to
resolve references to functions and CPL variables found in the command
line. These references are signaled by the presence of brackets, []
(function references), and percent signs, % (variable references).

The evaluator replaces all variable references in the command line with

the actual values of the variables. It then invokes the fm}ctions
referenced in the command line, replacing their references with the

First Edition 1-20

J

INTRODUCTION TO THE COMMAND ENVIRONMENT

values returned by the functions., It does this only once; if the
replacement value for a function contains the [, 1, or % characters, or
if the replacement value for a variable contains the % characters, the
expression evaluator does not evaluate them again; it leaves them as
they are. (A special function called RESCAN may be used to reevaluate
such references when desired.)

Once all of the references have been replaced with their values, the
command processor determines the name of the command being invoked, the
type of program being invoked (internmal, EPF, CPL, or static-mode), and
the command preprocessing features that apply to this program. It uses
the command features decoder to determine the latter information.

The Cammand Features Decoder

Once the command processor knows the name of the command being invoked
and the type of program it is, it uses the command features decoder to
determine which command processing features are to be inhibited and
enabled for the command.

The command features decoder handles program EPFs by reading out of the
EPF itself the information on ocommand processing features. This
information is placed in the EPF by BIND when it generates an EPF., To
change this information from its default settings (and thus to request
nordefault processing of features), programmers use BIND subcommands
such as WILDCARD, NAMEGENPOS, NO_TREEWALK, and so on.

The decoder handles an internal command by reading the information out
of the internal commands table in PRIMDS.

All CPL. programs have the same features inhibited and enabled, as
described earlier in this chapter. 'Thus, the decoder handles CPL
programs very easily.

The decoder handles a static-mode program almost as easily as a CPL
program. The features for a static-mode program depend upon whether it
has an NX$ or MW$ prefix, or no such prefix, as described earlier in
this chapter.

The command processor passes the information thus brought forth by the
decoder to the command preprocessor.

The Conmand Preprocessor

The command processor now calls the command preprocessor with:
e The conmand line as it currently stands

e Information on command processing features

1-21 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

e The appropriate invoker module for the command (based on the
type of program being invoked)

The command preprocessor searches the ocommand line for iteration
specifications and special options, as selected by the command
processing features., Any iteration, object type selection, user
verification, and name generation is then performed by the command
preprocessor by generating multiple copies of the command line.

As each copy of the command line is generated and, optiomally, approved

by the user, the command preprocessor calls the invoker module with the
copy of the command line, The invoker module calls the target program.

The Program Invokers

There are four separate program invoker modules, one for each type of
program. Each module uses the same calling sequence which includes the
command line, the severity code for the program, the command state
structure, the ocommand flags, and the returned function value pointer.
(Chapter 3 describes this information in detail.)

The appropriate module then invokes the target program (or internal
PRIMOS subroutine) with the same information. For example, the EPF
invoker module calls the EPFSINVK subroutine, whereas the CPL invoker
calls the CPL interpreter. (Because CPL consists of PRIMOS command
lines, the CPL interpreter invokes the command processor recursively to
execute PRIMOS commands specified in the CPL, program. If the CPL
program invokes another CPL program, the recursively invoked command
processor winds up invoking the CPL interpreter again, recursively, to
execute the second CPL program.)

When the target program oompletes, it returns to its invoker module.
The invoker module then returns to the command preprocessor, which
either proceeds to the next iteration of the command line or, when
finished, returns to the ocommand processor. When the command
preprocessor returns to the ocommand processor, execution of the
original command line is complete, so the command processor returns to
the listener. ‘The listener then issues a prompt indicating the
severity level for the entire command line and awaits a new command.

The Default On—unit

The listener establishes the default omunit, named DF_UNIT_, as the
handler for the wildcard ANYS condition. Any conditions signaled for
the process that are not handled by the running program reach the
default onunit, which performs appropriate default actions for the
ocondition. For example, the default behavior upon receipt of the QUITS
condition is to clear terminal buffers, display the QUIT message on the
user's terminal, suspend command input, and invoke the listener again
to create a new command level,

First Edition 1-22

9

INTRODUCTION TO THE (GOMMAND ENVIRONMENT

The default onmunit is not reserved for unusual circumstances. In
fact, it is a crucial part of the command enviromment because it is
used by many of the modules in the command enviromment to communicate
between command levels.

For example, when a static-mode program invoked on 1level 1 is
overwritten by a static-mode program invoked on level 2, the
static-mode invoker signals a condition that is caught by the default
omrunit for the level 2 invocation of the listener. The condition
tells the default omunit that a START or REENTER from that level to
the level below should not be allowed if a static-mode program is in
use there. The default onrunit records this information for use by
owning the current invocation of the listener (in this example, the
invocation for level 2). Then, if the listener is instructed by the
user (via a START or REENTER command) to attempt to continue executing
the program on level 1, the listener knows to reject the attempt
because the program on level 1 has probably been overwritten.

The default onmrunit also performs default handling of arithmetic
overflow and other related error oonditions, as appropriate. For
example, if the user types START after the default omrunit has
displayed information on an arithmetic overflow condition, the default
omrunit sets the result of the arithmetic operation to an appropriate
value before continuing execution of the program. Otherwise, the
program would simply abort again when restarted.

Because of the nature of the condition-signaling mechanism, any of the
actions of the default on—unit may be overridden by a user program if
it establishes its own onunits for conditions.

However, because same conditions are used by the command enviromment as
a form of internal communications, and because many of these special
oconditions are handled by the default onunit, no user program should
catch an unrecognized condition without continuing the signal.

The default on—unit 1is not the only module in the command enviromment
that catches internal signals. The listener and the command processor
are examples of modules that catch signals used for internal
communication. The default on-unit may, in fact, signal same of these
conditions caught by other modules in the command enviromment as a
result of catching same other condition. For example, when the default
on-unit catches the condition LIBRARY_IO_ERRS, which indicates an error
in using language I/0, it displays appropriate error messages and then
signals the condition STOP$. The STOPS signal is caught by the command
processor and recognized as a program termination.

1-23 First Edition

Command Line
Processing

This chapter explains how features of the command processor interact
with program EPFs.

The PRIMOS Command Processor, invoked by calling CP$, performs several
types of command processing before actually invoking the desired
command. These types of processing, in the order performed, are:

1.
2,
3.
4.

Handling the command separator character (;)

Evaluation of command function and CPL variable references
Removal of null tokens (tokens containing only '')
Determination of command name

Determination of command type (internal, EPF .RUN program,
static-mode .SAVE program, .CPL program, or static-mode
program without suffix)

Determination of command iteration features enabled by command
Expansion of simple iteration

Expansion of treewalking

Expansion of wildcard specifications

Expansion of name generation patterns

2-1 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

After the above steps are performed, the target command or program is
invoked with the final command line; (or, if at least one of the forms
of iteration was used with many samewhat different oopies of the
command line).

For an example of the step-by-step processing of a command 1line
containing several command line features (command separators,
abbreviation expansion, iteration, treewalking, and wildcarding), as
well as for further discussion of command line features fram the user's
point of view, see the PRIMDS Commands Reference Guide.

There are many different ways to inhibit most of the 10 steps of
command line processing listed above. (Steps 4 and 5 must always be
performed to execute the command.) These are:

e Use of the tilde () as the first character in the command line;
this suppresses expansion, and thus inhibits Steps 1, 3, and 6
through 10

e Invocation of a function (by setting the Function-Call bit in
the flags argument of CP$), which inhibits Steps 1, 3, and 6
through 10

e Disabling function and variable evaluation (by setting the
Inhibit-Evaluation bit in the flags argument of CPS), which
inhibits Step 2

e Invocation of the ABBREV (or AB) command, which inhibits any
remaining activity in Step 1, and which inhibits Steps 8 through
10

e Invocation of a CPL program, which inhibits Steps 8 through 10

e Invocation of a static-mode program with the NX$ prefix, which
inhibits Steps 7 through 10

e Invocation of a static-mode program with the NWS prefix, which
inhibits Steps 8 through 10

e Invocation of a program EPF built using the NO_ITERATION
subcommand of BIND, which inhibits Step 7

e Invocation of a program EPF built using the NO_TREEWALK
subcommand of BIND, which inhibits Step 8

e Invocation of a program EPF built using the NO_WILDCARD
subcommand of BIND, which inhibits Step 9

e Invocation of a program EPF built using the NO_GENERATION
subcommand of BIND, which inhibits Step 10

In addition, a particular step is inhibited if it is keyed to a

character or to a sequence of characters (such as ; for command
separation or () for iteration) and the key is either not present on

First Edition 2-2

J

)

COMMAND LINE PROCESSING

the command line or is present only within single quotes. For example,
the following two command lines execute with Step 1 inhibited:

TYPE Compiling main program.

TYPE Compiling subroutine PLOTXY';' language is F77.

The rest of this chapter focuses on each of the above 10 steps in more
detail — in particular, the character sequence keys that ignite each
step are listed and explained.

STEP 1: HANDLING THE COMMAND SEPARATOR CHARACTER

The command separator character (;) is the key for Step 1. If present
and unquoted, Step 1 causes the original command line to be split up
into two or more command lines at each occurrence of the semicolon (;).
Each of these separate command 1lines is then passed through the
remaining steps, one by one, in the order in which it appeared in the
original command line.

Because each command 1line is treated separately, each may inhibit or
enable different combinations of Steps 7 through 10.

However, there exists a special case: the ABBREV command (and its
abbreviation, AB). After Step 5, if the command processor sees that it
is evaluating an internal command, it checks whether the command is the
ABBREV or AB command. If it 1is, the command processor treats any
remaining split command lines (following semicolons after the ABBREV
command) as part of the ABBREV command line, along with the semicolons.
Then it passes the assembled ocommand line through Steps 2 through 7
before executing it.

In other words, the command line

TYPE HELLO;ABBREV -STATUS

displays the word HELLO followed by the output of the ABBREV -STATUS
command, whereas the command line

ABBREV —STATUS;TYPE HELLO
produces the following error message:

Control argument "-STATUS;TYPE" not implemented. (abbrev)
ER!

2-3 First Edition

ADWVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

The purpose of this exception for ABBREV is to allow users to create
abbreviations that oontain semicolons. Note, however, that function
and variable references may still be evaluated (unless Step 2 is
inhibited).

STEP 2: EVALUATION OF FUNCTION AND CPL VARIABLE REFERENCES

If the command line oontains the characters [or %, the command
processor performs the evaluation of function and CPL variable
references.,

Whereas variable references are simply replaced by actual string
values, function references are replaced by calling the command
processor recursively to invoke the desired function and then
substituting the returned value. (Only function calls of external
programs are counted against your maximum command enviromment breadth.)

STEP 3: REMOVAL OF NULL TOKENS

If the command line oontains any single quotes ('), the command
processor removes null tokens (tokens containing only '') in this step.
For example, if the command line reads

(DPYAB" [B}

then the command line after this step becomes:

(OPY A B

This step is necessary because command preprocessing performed up to
this point, such as abbreviation processing (performed by the
listener), and function and variable evaluation, may result in null
tokens, Such null tokens might not be handled correctly by the target

program,

STEP 4: DETERMINATION OF COMMAND NAME

At this step, the first token of the command line becomes the command
name. The command may be an internal command or one of several types
of external command, as determined in the next step.

First Edition 2-4

A

(OMMAND LINE PROCESSING

STEP 5: DETERMINATION OF COMMAND TYPE

In this step, the command processor searches for the command in its
list of intermal PRIMOS commands. If the command is present in the
list, the command is an internal oommand. Otherwise, the command
processor searches the OMDNCO directory for the command as described in
Chapter 1. The suffix on the file found tells the command processor
what type of command is to be inwvoked.

If the command is RESUME, the command processor treats the entryname

portion of the pathname following the RESUME token as the actual
command name,

STEP 6: DETERMINATION OF (OMMAND ITERATION FEATURES

Depending upon the command type, the command processor determines which
of the remaining steps are to be inhibited. Internal commands and
program EPFs selectively enable or disable each of the remaining steps
according to information in the internal command table (for internal
comands) or in the .RUN file (for EPFs); all CPL programs inhibit
Steps 7 and 8 but enable Steps 9 and 10.

Static-mode programs inhibit or enable the remaining steps based on the
command name. If the name begins with NX$, all of the remaining steps
are inhibited., If the name begins with NW$, only Steps 8 through 10
are inhibited, Otherwise, all steps are enabled.

The RESUME command is treated specially, as described in the previous
step. The command iteration features for the RESUME command are not
determined by the internal command table entry for RESUME but are
determined instead by the program that is the target of the RESUME
command. In addition, the name generation pattern is considered to be
the token following the name of the program being invoked, rather than
the name itself.

If the program being invoked is (MDNCO>SEG, the name generation pattern
is considered to be the token following the pathname that follows the
SBEG conmand or the RESUME OMDNCO>SEG command, rather than the pathname
of the .SEG file itself,

STEP 7: EXPANSION OF SIMPLE ITERATION

If the command line contains parentheses, that is, (and), simple
iteration is performed, For each iteration, a new command line is
built that contains no parentheses; the command processor passes this
new command line through the remaining steps before executing.

2-5 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

STEP 8: EXPANSION OF TREEWALKING

If the command line contains a valid pathname with a directory portion
that contains wildcard characters, (@ + or *), the command processor
honors the following command line options:

~WALK_FROM (-WLKEM)
~WALK_TO (-WLKTO)
-BOTTOM_UP (-BOTUP)

If Step 8 is enabled but no treewalk specification appears on the
command line, these options are ignored and are not passed to the

target program.

As the ocommand processor matches each directory to the treewalk
specification, it passes the resulting command lines through Step 9.

STEP 9: EXPANSION OF WILDCARD SPECIFICATIONS

If the command line contains a pathname with an entryname portion that
contains a wildcard character, (@ + or *), and if either the directory
portion of the pathname contains no wildcard character or Step 8 is
enabled, the command processor performs wildcard expansion honoring the
following command line options:

-BEFORE (-BF) -FILE

-MODIFIED BEFORE (-MDB) -DIRECTORY (-DIR)

-AFTER (-AF) —SEGMENT_DIRECTORY (-SEGDIR)
-MODIFIED AFTER (-MDA) —-ACCESS_CATHGORY (-ACAT)
-BACKEDUP_BEFORE (-BKB) ~-VERIFY (-VFY)
-BACKEDUP_AFTER (-BKA) -NO_VERIFY (-NVFY)

-RBF

If this step is enabled but no wildcard specification is on the command
line, these options are ignored and are not passed to the target

program.

The default options depend upon the command name and command type. For
static-mode programs, the defaults are:

-FILE -DIR -SEGDIR —-ACAT —NO_VERIFY

First Edition 2-6

COMMAND LINE PROCESSING

For internal commands and EPFs, the defaults depend upon the command
name, The default for an intermal command resides in the internal
commands table in PRIMOS, while the defaults for an EPF are set during
the BIND session that created the EPF. CPL programs have no applicable
defaults because they always inhibit Step 9.

As the command processor compiles a list of items that match the given
wildcard specification, it may ask the user to verify (or approve
action on) each item:

e If -VERIFY was specified, it will request verification.
e If -NO_VERIFY was specified, it will not request verification.

e If neither -VERIFY nor -NO_VERIFY was specified, it either does
or does not request verification, depending on the default for
that particular command.

As the user affimms each matching object, or as each matching object is
found (if no verification is taking place), the oommand processor
builds a command 1line for each object. When the list of objects has
been compiled, the command processor passes each resulting command line
through Step 10.

STEP 10: EXPANSION OF NAME GENERATION PATTERNS

If a token on the command line contains the name generation character
(=), the ocommand processor performs name generation. Name generation
characters also include ~ and +, although = must be present for name
generation to be performed.

The oommand processor analyzes the source pattern for the name
generation. The source pattern is a particular token on the command
line, typically the first argument, although internal commands and EPFs
may select subsequent arguments as their name generation source
patterns.

Then, the command processor combines the source pattern with each token
containing = to replace the tokens with actual names. After each
command line 1is oonstructed, the command processor invokes the target
command or progranm,

2-7 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

INVOCATION

The final step is invocation of the target command or program. There
are four invocation modules:

e The internal-command invoker

e The EPF invoker

e The CPL~-program invoker

e The static-mode-program invoker

Each of these invokers calls the target command or program, and each
regains control when the command or program returns., (Static-mode
programs are specially handled when they call EXIT so that they return
to the static-mode-program invoker.)

If same form of interruption occurs, causing a new command level to be
obtained, the iteration at the original level is only suspended, not
terminated. Continuing the interrupted program resumes iteration where
it left off.

Moreover, if iteration is in progress at command level 1, and the user
types Control-P to reach command level 2, the user may issue another
command that performs iteration without disturbing the suspended
iteration at command level 1. After the second command has £finished,
the user may use the START command to continue with the iteration begun
at command level 1.

However, if the user releases the original level, moving down to a
previous level; or, if the user releases to the original level, thus
releasing the target program and the invocation of the command
processor for that program, all of the iteration is terminated.

First Edition 2-8

)

)

Program EPF Calling

Sequence

The main entrypoint of a program EPF is invoked by the command
enviroment with a standard calling sequence. This calling sequence
consists of five arguments:

1. The command line, supplied by the invoker

2. The command status, set by the invoked program to indicate its
level of success to the invoker

3. Information on the command processing state, supplied by the
invoker

4, A flag indicating whether the invoker desires a return value —
that is, whether the invoker is treating the invoked program as
a command function

5. A pointer, set by the invoked program to point to the returned
value structure

The complete calling sequence is illustrated near the end of this
chapter; however, very few programs need all the information and
arguments provided by the command enviromment. In fact, most programs
need accept only two or fewer arguments.

The invoker is always the EPFSINVK subroutine, EPF$INVK may be called
directly by user programs, by the EPFSRUN subroutine, or by the CP$
subroutine. EPFSRUN itself is called directly by user programs. CP$

is also callable by user programs, and is called by PRIMDS to execute a
command.,

3-1 First Edition

ADVANCED PROGRAMMER'S GUIDE, VCLUME III: COMMAND ENVIRCONMENT

TYPES OF CALLING SEQUENCES

There are five types of program EPF calling sequences, with various
levels of complexity. They are:

1. The program calling sequence, which takes no command 1line and
which returns no information

2. The command calling sequence, which accepts a command line and
which returns a severity code

3. The command function calling sequence, which accepts a command
line and which returns both a severity code and a pointer to
the returned function value

4. The detailed command calling sequence, an extended form of the
command calling sequence that accepts detailed command
processing information

5. The complete calling sequence, which ocombines the command
function calling sequence with the detailed command calling
sequence

The remainder of this chapter describes each of the calling sequences
listed above.

In all cases, the EPFSINVK subroutine passes either =zero or five
arguments to the EPF it invokes. It determines the number by examining
the EB of the EPF's main subroutine, If the EM shows that the
subroutine accepts no arguments, EPFSINVK passes none (thus using the
program calling sequence for the invocation). Otherwise, EPFSINVK
passes all five arguments to the invoked EPF; the EPF itself decides
how many of the arquments to accept. Any arquments it does not accept,
it ignores. (The PCL instruction, which performs procedure calls on
Prime systems, handles this situation properly.) Alternatively, the
main subroutine of the invoked EPF may accept all five arguments but
choose to ignore some or all of them.

Except for the program calling sequence, therefore, the five types of
calling sequence listed above are differentiated not by the actions of
EPFSINVK but by the number of arguments that the main subroutine has
been designed to accept., This chapter differentiates and describes
them to simplify your job when you construct the main program of an
EPF. By looking at the descriptions of the functiomality each calling
sequence provides, you can decide what kind of program you are writing
and then choose the calling sequence that best suits your program.

First Edition 3-2

9y

PROGRAM EPF CALLING SEQUENCE

PROGRAM CALLING SBQUENCE

The program calling sequence is the simplest calling sequence because
it accepts no arguments. Any command line passed to such a program is
ignored; no severity code is returned, so a severity code of 0 is
assumed by the invoker; if the program 1is invoked as a command
function, no pointer to the returned value is returned.

The calling sequence is not illustrated, because it contains no input
or output arguments.

A program whose main subroutine accepts no arguments may use the SETRCS
subroutine, described in the Subroutines Reference Guide, to return a
severity code, even though it does not accept the severity code
argument in its main subroutine. This feature eases the comversion to
an EPF of an existing static-mode program that uses SETRCS.

COMMAND CALLING SBQUENCE

The command calling sequence is used for programs that accept ocommand
line arquments and options and that return a severity code.

Arguments in the Cammand Calling Sequence

The coomand calling sequence is the simplest calling sequence that
accepts arguments, It accepts two arguments:

1. The command line, an input-only argument
2. The severity code, an output-only argument

If a program that accepts only these two arguments is invoked as a
command function, no pointer to the returned value is returned.

Figure 3-1 illustrates the command calling sequence, where EPF is the
main subroutine of the program EPF.

Camand Line: The length of the command line can be a maximum of

32,766 characters. Your program may limit the length to any value it
chooses., Practical limits depend on the source of the ocommand 1line.
For example, the 1limit on the length of a command line entered by an
interactive user, or from a command input file, is 160 characters,
whereas the 1limit on the length of a command line in a CPL program is
1024 characters.

If your program is passed a command line that is longer than it can
handle, it should use the error code ESTRCL both as a severity code and
as an error code to ERRPRS to indicate that the command line has been
truncated. If your program aborts due to this ocondition, then a

3-3 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: QOMMAND ENVIRCNMENT

Command Calling Sequence

Command Line
Arguments

=32766
STRING

\j
EPF (command-line, severity-code)

|

HALF

INT
l <0: Warning
0: No Error

>0: Error

Command Calling Sequence
Figure 3-1

First Edition 3-4

9

h)

PROGRAM EPF CALLING SEQUENCE

truncated command line is an error; therefore, your program should
return ESTRCL, a positive value, as the severity code. If your program
continues processing, but uses a truncated form of the command 1line,
your program should return -ESTRCL, a negative value, as the severity
code (unless a positive error code is required for other reasons) to
indicate a warning condition.

In PL/I-G, you can use the LENGTH built-in function to check whether
the length of the command line is greater than your program supports,
even if you have declared the command line to be the maximum size your
program supports. In FORTRAN and other languages, you can compare the
first halfword of the command line argument, which is the actual length
of the command line, to the maximum length your program supports.

If your program does not accept a null command line, it should use the
ESNQOM error code to indicate that it has been passed a null command
line. In addition, you may wish to have your program display usage
information when passed a null command 1line; this is what many
Prime-supplied programs, such as SPOCL and JOB, do with a null command
line., Even if your program does display usage information, it should
still return ESNQOM, a positive value, as the severity code to indicate
an error.

Other error codes your program may wish to return as either positive
values (to indicate errors) or as negative values (to indicate
warnings), and which your program may also wish to use when calling
ERRPRS to display warning messages, are:

Error Code Used For

ESBPAR Invalid numeric arquments — arguments where a
number was expected but same other argument was
supplied

ESBNAM Invalid file system objectname argquments

ESNMLG Overly long names, such as a file system
objectname that is more than 32 characters long

ESITRE Invalid pathnames

ESCMND Invalid command formats, such as the use of an

option when no options are allowed, or the use of
command line arguments when no command line
arqguments are allowed

ESBARG Invalid arguments, such as the use of an
unrecognized option, or the use of a name or
number when an option was expected

ESIVOM Invalid usage of a command, such as a combination

of options and arguments that is not permitted or
that does not make sense

3-5 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: QOMMAND ENVIRONMENT

ESMISA Missing arquments, such as when a number, name,
or option that is required is not provided on the
command line

All standard PRIMDS error codes, including those shown above, are
listed along with their numeric equivalents, messages, and
descriptions, in Volume 0 of this series.

Severity Code: Your program should set the severity code to an
appropriate value before returning from its main subroutine. The
meaning of a severity code depends on whether it is negative, zero, or
positive. The magnitude of the severity code is not defined by PRIMOS;
however, your program should have documentation that describes the
different severity ocodes it may return and what they mean. Typically,
standard PRIMOS error codes, listed in Volume 0 of this series, are
used for severity ocodes; to indicate warning conditions, the negated
values of standard PRIMDS error codes are often used.

COMMAND FUNCTION CALLING SEQUENCE

The command function calling sequence is used when the program expects
to be invoked as a command function. It may or may not expect command
line arguments and options, and it may or may not return a severity
code. Such a program oonstructs a returned value — that is, a text
string that can be substituted on the conmand line for the function
reference that invoked the program, It then returns a pointer to the
structure that contains that returned value.

The steps a conrmand function performs are:
1. Accept five arguments in the main entrypoint calling sequence.

2. Determine the string value to be returned to the calling
program.

3. Allocate memory for the string value to be returned.
4, Copy the string value into the allocated memory.

5. Store the pointer to the allocated memory into the pointer
passed in the calling sequence of the main entrypoint.

6. Return to the calling program.

Step 1, accepting five arguments in the main entrypoint, is described
below in the section entitled Arquments in the Command Function Calling
Sequence. Step 2, determining the value to be returned, depends on the
purpose of your program. Steps 3 and 4 are uswally combined into one
step by calling the ALS$RA subroutine, described below in the section
entitled The ALSSRA Subroutine. Alternatively, they may be performed

First Edition 3-6

3

PROGRAM EPF CALLING SEQUENCE

separately by calling the ALCSRA subroutine and then copying the string
value afterwards. Typically, only programs written in PL/I-G or PMA
perform Steps 3 and 4 separately.

Step 5 is often performed implicitly during Step 3 if ALS$RA or ALCSRA
is passed the same variable that was accepted in the calling sequence
of the main entrypoint; otherwise, your command function must
explicitly set the rtnfcn-ptr variable passed to it in the «calling
sequence of the main entrypoint so that it points to the structure
allocated by ALSSRA or ALCSRA.

Step 6 is performed in the same way for functions as for other types of
programs., Your program should set the returned severity code to an
appropriate value before returning.

After the next three sections, a section entitled Sample Cammand
Functions presents two simple sample command functions.

Arguments in the Command Function Calling Sequence

The main subroutine of a command function accepts five arguments:
1, The command line, an input-only argument
2. The severity code, an output—only argument

3. An input-only argument, which may be ignored by most command
functions

4, The invocation form bit, an input-only argument

5. The returned value pointer, an output-only argument
Figure 3-2 illustrates the command calling sequence, where EPF is the
main subroutine of the program EPF.

Camand Line: See the section earlier in this chapter entitled COMMAND
CALLING SEQUENCE for information on the command line. That information
applies to command functions as well.

Severity Code: See the section earlier in this chapter entitled
COMMAND CALLING SEQUENCE for information on the severity code. That

information applies to command functions as well.

Ignored: The information passed to a program in the third argument may
be ignored by most command functions. It is described in the next
section, entitled DETAILED COMMAND CALLING SEQUENCE.

3-7 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

Command Function Calling Sequence

Command Line
Arguments

=32766
STRING

|

1
BIT

|

Bit1 2........ 16
|] reserved |

f=0: Not a Function Call
f=1: A Function Call

EPF (command-line, severity-code, ignored, function__call, rtn-fcn-ptr)

|

HALF
INT
l Halfword
<0: Warning :
0: No Error 0 (version)
>0: Error Returned Value
<32766
STRING

|

PTR

|

STRUC

_

Command Function Calling Sequence
Figure 3-2

First Edition 3-8

PROGRAM EPF CALLING SBEQUENCE

Invocation Form: The form of program invocation is a bit that
indicates whether the program is being invoked as a command function or
as a normal command., When set (1), function-call indicates that the
invoker expects the program to set rtn—fon-ptr to point to a structure
containing the returned value of the function. When reset (0),
function-call indicates that the invoker does not expect the program to
set rtn-fon—ptr at all, and that in fact the invoker may not have

supplied the rtn—fcn—ptr argument.

Caution

Under no circumstances should your program set rtn-fon—ptr when
function-call is reset (0), nor should your program allocate
storage for the returned value. When function-call is reset
(0) , the fifth argument, rtn-fon-ptr, may not be passed to your
program, and any attempt that your program makes to set it may
therefore result in a POINTER FAULTS error oondition being
signaled, If the fifth arqument is passed, but function—call
is reset (0), then your program may succeed at setting
rtn-fon-ptr, but the invoking program will not expect it to
point to the returned structure, and will therefore not
deallocate the memory used by the structure.

Returned Value Pointer: If your program has been invoked with the
function—call bit of the calling sequence set (1), then the invoking
program expects your program to return a pointer to a structure that
contains the returned value. The returned value is a text string of
0-32766 characters. The structure contains a version number (currently
0) as a HALF INT value and the returned value as a <=32766 STRING
value.

After ALSSRA or ALCSRA returns a pointer to your program, your program
must use the rtn-fon-ptr argument to return that pointer to its
invoker. The calling program will pass the pointer your program
returns in rtn-fon-ptr to the FRESRA subroutine (described in Chapter
4), so that FRE can free the storage allocated by ALSSRA or ALCSRA.

Caution

If your program does not use ALSSRA or ALCSRA to determine the
rtn—fon—ptr pointer, but uses instead a pointer constructed by
other means, then when the calling program calls FRESRA with
the returned pointer, a fatal error will occur.

The ALSSRA Subroutine

'lhe_ALssRA subroutine allocates sufficient memory to hold the supplied
string value, copies the string value into the allocated memory, and
returns the pointer to the allocated memory for use by the program that

3-9 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME IIX: COMMAND ENVIRONMENT

invoked the command function. The calling sequence for ALS$RA is
illustrated in Figure 3-3.

Your program passes ALSSRA the string value to be returned in value and
its size, in characters, in value-size. ALSSRA allocates sufficient
memory (at least (value-sizet+5)/2 halfwords) to hold the string value;
sets the first halfword of the allocated memory to 0 to indicate a
version 0 returned value structure; stores the length of the string in
value-size into the second halfword of the allocated memory; copies
the string in value into the allocated memory starting with the third
halfword; and returns a pointer to the first halfword of the allocated

memory in rtn-fen-ptr.

After calling this subroutine, your program needs only to ensure that
the pointer returned by ALSSRA is returned by the main entrypoint of
your program to the calling program. Your program ensures this by
storing the pointer into the rtnfcn—ptr argument of its main
entrypoint. Then, your program simply returns to its invoker. ‘The
invoking program is responsible for deallocating the memory allocated
by ALSSRA.

The ALCSRA Subroutine

The ALCSRA subroutine is similar to the ALSS$RA subroutine, except that
it does not copy the string value into the allocated memory. It leaves
this task to your program, the command function.

The ALC$SRA subroutine allocates sufficient memory to hold a string
value of the specified length and returns the pointer to the allocated
memory for use by your program. The calling sequence for ALCSRA is
illustrated in Fiqure 3-4.

Your program passes the number of halfwords to be allocated in
halfwords. This value should be at least (value-sizet5)/2, where
value-size is the length of the string value to be returned. ALCSRA
allocates the requested number of halfwords to hold the string value,
and returns a pointer to the first halfword of the allocated memory in

rtn-fen-ptr.

After calling this subroutine, your program must set the first halfword
of the allocated memory to 0 to indicate a version 0 returned value
structure; set the second halfword of the allocated memory to the
length of the string value in characters; then copy the string value
into the allocated memory starting at the third halfword of the
allocated memory. Your program must use the rtnfen-ptr pointer to
perform these tasks; therefore, only programs written in PL/I-G or PMA
are likely to use this interface.

After copying the string value into the allocated memory, your program
must store the pointer returned by ALCSRA into the rtn-fcn—ptr argument
of your program's main entrypoint, in order to ensure that the pointer
is returned to the calling program. Then your program simply returns

First Edition 3-10

D)

PROGRAM EPF CALLING SEQUENCE

Allocate and Set Returned Function Value

ned Length of
\F;:::; Returned Value
(characters)

FULL
STRING INT

-

ALSS$RA (value, value-size, rtn-fcn-ptr)

l

PTR
Halfword STRUC
0 0 (version)
1| Returned Value
) < 32766
STRING

The ALSSRA Subroutine
Figure 3-3

3-11

First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

Allocate Space for Returned Function Value

Number of
Halfwords to
Allocate

FULL
INT

|

ALCS$RA (halfwords, rtn-fcn-ptr)

|

PTR

l

Halfword STRUC

The ALCSRA Subroutine
Figqure 3-4

First Edition 3-12

2 J

)

y

to its invoker.

the memory allocated by ALCSRA.

Sample Command Functions

PROGRAM EPF CALLING SEQUENCE

The invoking program is responsible for deallocating

The first sample program is a FORTRAN program that returns the
usernumber of the user invoking the program.

C

SUBROUTINE USRNUM (QOMLIN, QODE, IGN, FUNC, RINPTR)
INTBEGER*2 (OMLIN(1) ,QODE, IGN, FUNC

INTHGER*4 RINPTR(2)

SINSERT SYSCOM>ERRD, INS.FIN
SINSERT SYSCOM>KEYS, INS.FIN

C

C

INTEGER*2

& U, /* User number; later, units digit of U.
& TIMARR(12), /* TIMDAT array.

& STR(2), /* String value containing user number.
& STRLEN, /* Number of characters in STRLEN,

& H, /* Hundreds digit of U.

& T /* Tens digit of U.

C Make sure we have no command line.

C
C

IF (QOMLIN(1) .BQ.0) GO TO 10

C Reject attempted use of command line.

C

QODE=ESIVCM

IF (AND(FUNC, :100000) .

& '"USERNUMBER',10)
RETURN

CALL TIMDAT (TIMARR,12)
U=TIMARR (12)

IF (U.GT.9) GO TO 20
STR(1)=LS(U,8)+'0 '
STRLEN=1

GO TO 100

H=U/100

U=U-H*100

T=U/10

U=U-T*10

IF (H.NE.O) GO TO 30
STR(1)=LS(T,8)+H'00"
STRLEN=2

GO TO 100

/* Invalid command error.
m.0) /* Invoked as command?
& CALL ERRPRS(KSIRIN,QDE, 'No command line accepted',24,

/* Return to invoker.

/* Get user number in TIMARR(12).

/* For ease of access.

/* More than one digit?
/* Convert to single-digit ASCII.

/* Set to 1 digit.

/* Get hundreds digit.
/* Get last two digits.
/* Get tens digits.

/* Get last digit.

/* Need three digits?
/* No, make two digits
/* Indicate two digits.

3-13

into ASCII.

First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

30 STR(1)=LS(H,8)+I+'00"' /* Make three digits into ASCII.
STR(2)=LS(U,8)+'0 '
STRLEN=3 /* Indicate three digits,

C

100 IF (AND(FUNC,:100000) .NE.0) GO TO 200

C

C Not a function call; display user number.

C
CALL TNOUA('Your user number is ',20)
CALL TNOUA(STR, STRLEN)
CALL ™ou('.',1)
GO TO 300
C
C A function call; allocate and store user number.
C
200 CALL ALSS$RA(STR, INTL (STRLEN) ,RTNPIR)
C
C Return to invoker.
C
300 QODE=0 /* Success!
RETURN
C
END

The next sample program, written in PL/I-G, returns the username of the
invoking user.

username: proc (comlin,code,ign,func,rtn fcn_ptr);

dcl comlin char(32) var, /* Must be null. */
code fixed bin(15), /* Severity code. */
ign fixed bin(15), /* Ignored. */
func bit(1), /* Set if function call, */
rtn_fon_ptr ptr; /* Returned function value pointer. */

$include 'SYSQOM>ERRD,INS.PL1';
$include 'SYSQOM>KEYS.INS.PL1';

dcl unam char(32) var; /* Trimmed username. */

dcl 1 timarr,
2 ignore (12) fixed bin(15), /* Ignore 12 halfwords. */
2 user_name char(32); /* The username. */

dcl 1 rtn _struc based(rtn_fcn ptr),
2 version fixed bin(15),
2 value char(32) var;

dcl timdat entry(1,2 (12) fixed bin(15),2 char(32),fixed bin(15)),
errpr$ entry(fixed bin(15) ,fixed bin(15) ,char(40),
fixed bin(15) ,char(8) ,fixed bin(15)),
alcSra entry(fixed bin(31) ,ptr),

First Edition 3-14

)

A

PROGRAM EPF CALLING SEQUENCE

tnou entry(char(60) ,fixed bin(15)),
tnoua entry(char(60) ,fixed bin(15));

if comlin='' then

do; /* No command line. */

call timdat(timarr,28);

unam=trim(user_name, '11'b) ;

if func then
do; /* Cammand function invocation. */
call alcSra(divide (length(unam)+5,2,15) ,rtn_fcn_ptr);
rtn_struc.version=0;
rtn_struc.value=unam;
end; /* if func */

else
do; /* Camand invocation., */
call tnoua('Your user name is ',18);
call tnoua ((unam) ,length (unam)) ;
call tnou('.',1);
end;

code=0; /* Success. */

end; /* if comlin='"' */

else

do; /* if comlin™='' */

code=eS$ivam;

if “func then
call errpr$(k$irtn,code, '"No command line accepted',24,

'USERNAME ', 8) ;
end; /* if comlin™='' */

end; /* username: proc */

DETAILED COMMAND CALLING SEQUENCE

The detailed command calling sequence adds a third argument to the
command calling sequence described earlier in this chapter. This third
arqument is a structure passed to the program EPF being invoked that
includes the following information:

e The command name as entered by the user

e A pointer to CPL local variables, if appropriate

e Cammand preprocessing information
Typically, a program EPF uses only the portions of the structure that
are applicable to the program. For example, if you wish your program
to display the command name entered by the user (rather than the
original name of your program) in error messages, you could have the

main entrypoint of your program use only the command name as entered by
the user and ignore the remainder of the structure.

3-15 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: OOMMAND ENVIRONMENT

The remainder of this section describes the information passed in the
third arqument of the program EPF calling sequence.

Arguments in the Detailed Command Calling Sequence

The detailed command calling sequence accepts three arguments:
1. The command line, an input—only argument
2. 'The severity code, an output-only argument

3. A structure ocontaining command processing information, an
input-only argument

If a program that accepts only these three arguments is invoked as a
command function, no pointer to the returned value is returned.

Figure 3-5 illustrates the command calling sequence, where EPF is the
main subroutine of the program EPF.

Command Line: See the section earlier in this chapter entitled COMMAND
CALLING SEQUENCE for information on the command line. That information
applies to detailed commands as well.

Severity Code: See the section earlier in this chapter entitled
QOMMAND CALLING SEQUENCE for information on the severity code. ‘That
information applies to detailed commands as well,

Cammand Processing Information Structure: Figure 3-6 illustrates the
command processing information, which is described in detail in the
next section.

Currently, two versions of the command processing information structure
are defined, The first two fields, the command name and the version
number, are always present. If version is 0, the remainder of the
command processing information structure is undefined and should not be
referenced; only halfwords 0-17 (0-21 octal) are defined for a version
0 structure., If wversion is 1, the entire structure is defined as
shown; that is, halfwords 0-25 (0-31 octal) are defined. Future
versions of the structure will have higher version numbers and may
define extensions to version 1 of this structure; however, the content
and meaning of halfwords 0-25 will remain the same,

First Edition 3-16

D

PROGRAM EPF CALLING SEQUENCE

Detailed Command Calling Sequence

Command Line g?orzén;?:g
Arguments i
g Information
<32766 STRUC
STRING

| |

EPF (command-line, severity-code, command-information)

|

HALF
INT

<0: Warning
0: No Error
>0: Error

Detailed Caommand Calling Sequence
Figure 3-5

3-17 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

Command Processing Information (Versions 0 and 1)

Halfword Halfword
oct dec oct dec
0 0 0O o
-+ | Command Name <32 STRING oo
20 16 16 20
21 17| Version (0 or 1) HALF INT 17 21
22 18 . . 18 22
23 19 | CPL Local Variables Pointer PTR 19 23
24 20 20 24
-DIR | -SEGDIR | -FILE| -ACAT| -RBF
25 21\ Tgr|ier |1em|1em | 18| Reserved 11 BT 21 25
-VERIFY | -BOTUP
26 22 1 BIT 1 BIT Reserved 14 BIT 22 26
o7 23| ~-WALK_FROM Value HALF INT 23 27
30 24 | “WALK_TO Value HALF INT 24 30
25| () | 9 [393] Reserved BIT
31 5 eserve 13 31
1BMj+18iT [18IT 2

Note: For a version O structure, only halfwords 0-17 (0-21 octal)
have defined values.

Command Processing Information
Fiqure 3-6

First Edition 3-18

PROGRAM EPF CALLING SEQUENCE

WARNING

Never store data into the oommand processing information
structure for any purpose., Same calling programs may have
declared only 18 halfwords of storage for a version O
structure, representing halfwords 0-17, and any attempt to
store beyond halfword offset 17 may ocorrupt memory. In
addition, because the structure is an input argument to the
program being invoked, the calling program may place the
structure in memory that is protected against writing.

Your program should check the version number only if it needs to use
information beyond halfword offset 17 (21 octal) into the command
processing structure; and, in such a case, your program should check
only that the version number is not 0 to ensure that the information
being retrieved is valid. Do not reject version numbers higher than 1.
However, if you choose, you may have your program reject version
numbers that are negative, because such numbers probably indicate
corrupted memory.

Cammand Processing Information

This section describes each field in the command processing information
structure shown in Figure 3-6.

Command Name: The command name field contains the command name as
specified by the user. The name will contain only the final element of
a pathname; it may or may not include the .RUN suffix. Your program
may use this name rather than the name designed for it in messages
displayed to the terminal, or your program may reject attempts to
invoke it with a name other than that which it was designed to have.

Typically, the ocommand name is the same name specified during the BIND
session that linked the program. However, if a user oopies your
program to a file with a different name and invokes the copy, or if the
name of the file ocontaining the program is changed (via ONAME for
example) , the command name will be different from the original name of
the program.

Version: The version number field contains the version number of the
command processing structure. Currently, version numbers 0 and 1 are
defined as described above. Higher version numbers will be used if
future versions of PRIMDS extend the oommand processing information
structure, The following table lists the currently defined version
numbers and the halfwords that are defined (have meaningful values) in
a structure with each version number listed:

3-19 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: QOMMAND ENVIRONMENT

Version Defined Halfwords

0 0-17
1 0-25

CPL Local Variables Pointer: The CPL Local Variables Pointer is
provided if the calling program is either a CPL program or a program
EPF provided with a CPL Local Variables Pointer (ultimately invoked by
a CPL program) ,

Sametimes referred to as the vcb ptr, for Variables Control Block
pointer, this pointer is used only when the program EPF wishes to read
or set a CPL variable that is local to the CPL program that invoked the
program EPF, Typically, such programs are designed as command
functions, and the CPL program uses the &SET VAR directive, as in:

&SET VAR MYVAR := [RESUME MYPROG]

However, a program that must reference more than one CPL variable must
either be constrained to use only global variables (accessing them via
the GVSGET and GVSSET subroutines) or must use the CPL Local Variables
Pointer along with the LVSGET and LVS$SET subroutines, A program
constructed in the latter fashion might be invoked from a CPL program
as follows:

RESUME MYPROG MYVAR OTHERVAR

Here, the MYPROG program accepts two variable names, MYVAR and OTHERVAR
in this example, and accesses them using LVSGET and LVSSET, which are
described (along with GVSGET and GVSSET) in the Subroutines Reference

Guide.

The CPL Local Variables pointer is NULL() (7777/0) if the invoking
program is not a CPL program, or if it is not a program EPF invoked by
a CPL program (either directly or via other program EPFs). A valid CPL
Local Variables pointer is generated only by the invocation of a CPL
program, and is valid only while that program is active; only program
EPFs invoked by the CPL program, and their descendants, may use the
Local Variables pointer for that CPL program.

Note

For maximum flexibility, design your program so that it accepts
either global variables — which have names beginning with a
period (.) — or 1local variables — which have names not
beginning with a period (.). Then, your program would call
either GVSGET/GVSSET or LVSGET/LVSSET, depending on what type
of variable name is supplied.

First Edition 3-20

J

PROGRAM EPF CALLING SEQUENCE

-DIRECTORY (-DIR) Bit: The -DIRECTORY bit is set if the command
processor is matching file directories when checking wildcard-laden
names. It does not necessarily mean that the file system object that
is specified in the current invocation is a file directory.

—SEGMENT _DIRECTORY (-SEGDIR) Bit: The -SEGMENT_DIRECTORY bit is set if
the command processor is matching segment directories when checking
wildcard-laden names. It does not necessarily mean that the file
system object specified in the current invocation is a segment
directory.

-FILE Bit: The -FILE bit is set if the command processor is matching
files when checking wildcard-laden names. It does not necessarily mean
that the file system object specified in the current invocation is a
file.

~ACCESS_CATEGORY (-ACAT) Bit: The -ACCESS_CATEGORY bit is set if the
command processor 1is matching access categories when checking
wildcard-laden names. It does not necessarily mean that the file
system object specified in the current invocation is an access

category.

-RBF Bit: The -RBF bit is set if the command processor is matching RBF
files when checking wildcard-laden names. It does not necessarily mean
that the file system object specified in the current invocation is an
RBF file. (RBF files are reserved for use by Prime.)

~VERIFY (-VFY) Bit: The -VERIFY bit is set if the ocommand processor
requires user verification of file system objects selected by
wildcard-laden names. It does not necessarily mean that the user has
verified the file system object specified in the current invocation,
because verification is requested only if the user specifies a
wildcard-laden name. Use the wildcard bit, described below, if you
wish to detemine whether the user was actually asked to verify the
current invocation for the file system object; if both the -VERIFY bit
and the wildcard bit are set (1), then verification was both requested
and provided.

-BOTTOM_UP (-BOTUP) Bit: The -BOTTOM_UP bit is set (1) if the
-BOTTOM_UP option (abbreviated -BOTUP) was specified on the command
line, causing any treewalking to be performed at the lowest directory
levels first. It does not necessarily mean that treewalking is being
performed; see the treewalking bit, described below, for that
information.

3-21 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

-WALK_FROM (-WLKFM) Value: The -WALK FROM value is set to either the
value specified following the -WALK_FROM option (abbreviated -WLKFM) on
the command line or to the default value, which is 2. ILevel 1 is the
contents of the directory itself; 1level 2 is the contents of the
subdirectories, and so on. For example, in the treewalking
specification DIR1>@@>FO0, level 1 is the DIR1 directory; if FOO
exists in DIR1, it is found only if -WALK FROM 1 is specified.

This value does not indicate whether treewalking is, in fact, being
performed; see the treewalking bit, described below, for that
information,

~WALK_TO (-WLKTO) Value: The -WALK TO value is set to either the value
specified following the -WALK TO option (abbreviated -WLKTO) on the
command line or the default value, which is 999. This value does not
indicate whether treewalking is, in fact, being performed; see the
treewalking bit, described below, for that information.

Iteration () Bit: The iteration bit is set to 'l1'b if the command
line used to invoke the program contained an iteration list (that is,
contained parentheses). However, this bit is never set if the BIND
subcommand NO_ITERATION (abbreviated NITR) was issued when the program
was linked,

Wildcard @ + Bit: The wildcard bit is set to '1'b if the command line
used to invoke the program contained a wildcard-laden entryname (that
is, contained the @, +, or ~ character in the final element of a
pathname or in a simple pathname). However, this bit is never set if
the BIND subcommand NO_WILDCARD (abbreviated NWC) was issued when the
program was linked,

Treewalk >@> >+> Bit: The treewalk bit is set to 'l'b if the command
line used to invoke the program contained a wildcard-laden directory
name (that is, if it contained the @, +, or ~ character in a non-final
element of a pathname). However, this bit is never set if the BIND
subcommand NO_TREEWALK (abbreviated NIW) was issued when the program
was linked,

Sample Program

The following sample PL/I-G program simply displays all of the
information in the command processing information structure. Wwhile it
is intended primarily to illustrate how to declare and use the command
processing information structure in PL/I-G, it is also a useful program
for experimenting with various combinations of command preprocessing
features and BIND subcommands that enable, disable, or set parameters
for command preprocessing features.

First Edition 3-22

)

PROGRAM EPF CALLING SBEQUENCE

cam_proc_info: proc(comline,code,cominfo) ;

dcl comline char(1024) var, /* The command line. */
code fixed bin(15), /* Severity code. */
1 cominfo, /* Command processing info., */
2 comname char(32) var, /* The command name. */
2 version fixed bin(15), /* Currently 0 or 1. */
2 vcb_ptr ptr, /* CPL local variables. */
2 preprocessing_info, /* Command preprocessing info. */

3 mod_after_date fixed bin(31),

/* -MODIFIED_AFTER date. */
3 mod before_date fixed bin(31),

/* -MODIFIED BEFORE date. */
3 bak_after_date fixed bin(31),

/* -BACKEDUP_AFTER date. */

3 bak _before_date fixed bin(3l),

/* -BACKEDUP_BEFORE date. */
3 type_dir bit(1l), /* -DIR option specified. */
3 type_segdir bit(1), /* -SEGDIR option specified. */
3 type_file bit(1), /* -FILE option specified. */
3 type_acat bit(l), /* —-ACAT option specified. */
3 type_rbf bit(l), /* -RBF option specified. */
3 reserved 1 bit(1l), /* Reserved for future use. */
3 verify sw bit(l), /* -VERIFY option specified. */
3 botup_sw bit(l), /* -BOTUP option specified., */
3 reserved 2 bit(14), /* Reserved for future use. */
3 walk_from fixed bin(15),

* —WALK_FROM value. */

3 walk_to fixed bin(15), /* -WALK_TO value. */
3 in iteration bit(1), /* In iteration sequence. */
3 in wildcard bit(1), /* In wildcard sequence. */
3 in_treewalk bit(1), /* In treewalk sequence. */
3 reserved 3 bit(13); /* Reserved for future use. */

$include 'SYSCOM>ERRD,INS.PL1';
g$include 'SYSCOM>KEYS,INS.PLl':;

dcl strings fixed bin(15), /* Number of strings. */
last_string char(80) var, /* Last string. */
line to_show char(80) var; /* Line waiting to be shown. */

dcl (tnoua,tnou) entry(char(80),fixed bin(15)),
tovfd$ entry(fixed bin(15));

call tnoua('Command name is "',17);
call tnoua ((comname) ,length(comname)) ;
call tnoua('"',1);

if version=0 then
do; /* Version 0 means no more info., */
call tnou('.',1);
code=0;
return;
end;

3-23 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: QOMMAND ENVIRONMENT

if version=l then; /* Expected version number, */
else

do; /* New version, display it., */

call tnoua(', version #',11);

call tovfds$(version);

end; /* if version™=0 */

if vcb ptr=null() then call tnou(', no CPL variables.',19);
else call tnou(', with CPL variables,',21);

call tnoua('Command line is "',17);
call tnoua ((comline) ,length(comline));
call tnou('".',2);

strings=0;
last_string='"';
line_to show='Options: ';

if mod after_date=0 then;
else call show_date('-MODIFIED AFTER',mod after_date);

if mod before_date=0 then;
else call show_date('-MODIFIED_BEFORE',mod before_date);

if bak_after_date=0 then;
else call show_date('-BACKEDUP_AFTER',bak_after_date);

if bak before_date=0 then;
else call show_date('-BACKEDUP_BEFORE',bak_before _date);

if type_dir then call show_this('-DIR');

if type segdir then call show_this('-SEGDIR');
if type file then call show_this('-FILE');

if type_acat then call show_this('-ACAT');

if type_rbf then call show_this('-RBF');

if verify_sw then call show_this('-VERIFY');
if botup sw then call show_this('-BOTUP');

if walk_fram=2 then; /* The default., */
else call show_value ('-WALK FROM',walk_fram) ;

if walk _to=999 then; /* The default., */
else call show_value('-WALK TO',walk_to);

if in_iteration then call show_this('iteration');
if in_wildcard then call show_this('wildcard');
if in treewalk then call show_this('treewalk');
/* Show last line if we have shown anything. */
if strings=0 then;

else
if strings=1 then

First Edition 3-24

J

PROGRAM EPF CALLING SEQUENCE

call tnou('Option: '||last_string,length(last_string)+8);
else call show_this('");

code=0;
return;

show_date: proc(string,dtm); /* Display option with date/time. */
dcl string char(32) var,
dtm fixed bin(31l);

dcl dow fixed bin(15),
dtm_str char(21);

dcl cv$fda entry(bin(31) ,bin,char(2l));

call cv$fda(dtm,dow,dtm_str) ;
call show_this(string||' '||trim(dtm_str,'11'b));

end; /* show_date: proc */
show_value: proc(string,value); /* Display option with integer. */

dcl string char(32) var,
value fixed bin(15);

call show_this(string||' '||trim(char(value),'11'b));

end; /* show_value: proc */

show_this: proc(string); /* Display string in comma list. */
dcl string char(80) var;

dcl joiner char(6) var;

strings=strings+l;

if strings<=2 then joiner='';
else
if string='' then
if strings<=3 then joiner=' and ';
else joiner=', and ';
else joiner=', ';

if length(last_string)+length(line_to_show)+length(joiner)>79 then
do:

’
if strings<=3 then
call tnou((line_to_show) ,length(line_to_show));
else call tnou(line_to_show||',',length(line_to_show)+l);
if string='' then line_to_show='and '||last_string;
else line_to_show=last_string;
end;
else
line to show=line_to_show||joiner||last_string;

3-25 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: QOMMAND ENVIRONMENT

if string='' then call tnou((line_to_show) ,length(line_to_show));
else last_string=string;

end; /* show_this: proc */

end; /* com_proc_info: proc */

COMPLETE CALLING SEQUENCE

The complete calling sequence combines the ocommand function calling
sequence with the command processing information provided in the third
arqument of the calling sequence, as used in the detailed command
calling sequence. In the command function calling sequence, described
earlier, the third arqument was ignored; in the detailed command
calling sequence, as in the ocomplete calling sequence, the third
argument provides the program with information on the processing of the
command that invoked the program,

Figure 3-7 illustrates the complete calling sequence, where EPF is the
main entrypoint of the program EPF.

The first and second arguments are described in detail in the section
entitled COMMAND CALLING SEQUENCE earlier in this chapter; the third
argument is 1illustrated in Figure 3-6 and is described in the section
entitled DETAILED COMMAND CALLING SEQUENCE earlier in this chapter;
the fourth and fifth arguments are described in the section entitled
QOMMAND FUNCTION CALLING SEQUENCE. ‘The remainder of this section
explains why the complete calling sequence is useful and points out
effects of combining a command and a command function in one progranm.

Why Use the Camplete Calling Sequence?

A program that uses all five arguments in the complete calling sequence
does so for one of several reasons:

e It is a command function that needs access to CPL variables
local to the CPL program that called it.,

e It is a command function that needs access to its own command
name,

e It is a program that may be invoked as a command function or as
a command, and when invoked as a command, it wishes to make use
of command preprocessing information.,

e It combines any of the above three reasons; for example, it
might be a program that, when invoked as a command, does not
need command processing information, but when invoked as a
command function, needs the CPL Local Variables pointer,

First Edition 3-26

J

PROGRAM EPF CALLING SEQUENCE

Each of these uses of the complete calling sequence is examined in more
detail in the next section.

Cammand Function Needing Local CPL Variables

When a command function needs access to the CPL variables local to the
CPL program that invoked the command function, it uses the LVSGET and
LVSSET subroutines to read and set the local CPL variables. An example
of a command function that also sets local CPL variables is the
[OPEN_FILE] function, described in the PRIMOS Commands Reference Guide
and in the CPL User's Guide. Although not an EPF, this function could
be written as an EPF as of Rev. 19.4, due to the program EPF interface
described earlier in this chapter.

Cammand Function Needing Cammand Name

Rarely, a command function may need access to its command name, if it
wishes to make a distinction (or to enforce an equivalence) between the
name of the program as built during the BIND session that linked the
program and the name of the program as invoked by the user. For
example, when such a program issues messages, it may wish to use its
invocation name, rather than its original name, so that its name may be
easily changed without making error messages originating from the
program difficult to track down.

Program Usable as a Command and as a Cammand Function

A program may need to be usable as both a conmand and as a command
function. In addition, it may need access to ocommand processing
information when invoked as a command, as a command function, or as
either one.

For example, a program may, when invoked as a command, wish to use
command preprocessing information to generate useful output, depending
upon whether its invocation included any wildcard, treewalking, or
iteration specification. The same program, when invoked as a command
function, does not need that information.

It is important to understand that the PRIMOS command processor does
not perform any type of ocommand iteration (including wildcarding,
treewalking, and explicit iteration) when it is called upon to invoke a
program as a command function.

Therefore, a program invoked as a command function should not expect to
find any usable information in the command preprocessing information
contained in halfword offsets 21-25 (25-31 octal) of the command
processing information structure.

3-27 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

The PRIMOS command processor knows that a command is being invoked as a
command function because its entrypoint, CP$, has a command-function
bit as one of its input arquments. When this bit is set, CP$ does not
perform any command iteration on the command line; instead, it passes
the untouched command line directly through to the program EPF. (Other
command preprocessing is performed as usual.)

However, a user-written command processor, other than CP$, may invoke a
program EPF as a command function, providing useful information in
halfword offsets 21-25 in the command processing information structure
by passing it to EPFSINVK or EPFSRUN., If your program EPF is designed
to be invoked only by such an application, it may use the command
preprocessing iteration information even when invoked as a command
function, This situation is expected to be quite rare.

First Edition 3-28

)

9

PROGRAM EPF CALLING SBQUENCE

Complete Calling Sequence

Command
Processing —————
Information
Command Line Bit 1 2........ 16
Arguments [1] reserved |
f=0: Not a Function
Call
f=1: A Function Call
<32766 v 1
STRING STRUC BIT

| L1

EPF (command-line, severity-code, command-information, function-call, rtn-fcn-ptr)

i1 |

INT PTR
l Halfword l
<0: Warning 0 0 (Version) STRUC
0: No Error 1
>0: Error Returned Value | o J
' <32766
STRING

Camplete Calling Sequence
Figure 3-7

3-29 First Edition

Invoking Programs
From Within

Programs

A program or library may invoke another command, program, or function.,
PRIMOS provides three methods of invoking a program EPF, whether or not
it is a function:

e Via the CP$ subroutine, which invokes the PRIMOS command
processor

e Via the EPFSRUN subroutine, which inwvokes any program EPF

e Via the EPFSINVK subroutine, which invokes a program EPF that is
already mapped to memory, allocated, and initialized

You may also use the CP$ subroutine to invoke a command, a program, a
function, a CPL program, a CPL function, or a static-mode program.

This chapter describes how to use these subroutines to invoke commands,
programs, and functions. 'This chapter also describes how to use the
FRESRA subroutine to free memory used to store the result of a command
function. Finally, this chapter explains particular items that may be
of interest when invoking other commands, programs, or functions.

4-1 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

QOMMANDS, PROGRAMS, AND FUNCTIONS

There are several ways to categorize commands and programs under
PRIMOS. From the point of view of the programmer who will be writing
programs that invoke other programs or commands, the three most useful
methods of categorizing commands and programs consider:

e Where the programming instructions for the command or program
reside

e In which format the programming instructions for the command or
program are stored

e Whether the command or program is invoked as a function (that
is, whether it returns a value to its invoker)

In most cases, the PRIMOS ocommand processor allows you to issue
commands and run programs independent of their categorization. 'The
interfaces described in this chapter, CP$, EPFSRUN, EPFSINVK, and
FRESRA pertain to different categories of commands and programs:

e CPS$ can invoke any command or program, optiomally as a function.

e EPFSRUN and EPFSINVK can invoke only a program EPF, optiomally
as a function.

® FRESRA is used only at the completion of a function invocation,

after the function has returned its value; it is used
independently of the function's location or format.

Where the Programming Instructions Reside

The programming instructions for a command or program reside in one of
the following locations:

e Internal to the PRIMOS Operating System
® On disk, in the QMDNCO UFD
® On disk, but not in the OMDNCO UFD

Cammands are stored in the first two of these locations; programs are
stored in the third. A command residing in the QMDNCO UFD is just a
program in a special place, and it may be run as a program; a program
not residing in the OMDNCO UFD may be made into a command simply by
ocopying it into CMDNCO. Therefore, the distinction between ocommands
and programs on disk is somewhat hazy; the terms "command” ar}d
"program” are often interchangeable, and are often used together in
this guide. Some, but not necessarily all, commands and programs are
supplied by Prime.

First Edition 4-2

J

J

INVOKING PROGRAMS FROM WITHIN PROGRAMS

Intermal to PRIMDS are internal ocommands. These are all
Prime—supplied; Prime does not support the modification of PRIMOS by
custamers, such as adding new internal ocommands. Because internal
commands reside in virtual memory rather than on disk, they are treated
specially by the PRIMS command processor. In fact, some internal
commands have special privileges, such as the ability to access
internal PRIMOS tables.

While user-written programs cannot always perform the same functions as
internal PRIMDS commands, such programs can call the PRIMOS command
processor to invoke internal PRIMOS commands.

A special internal PRIMOS command is the RESUME command, abbreviated R.
The RESUME command is used to run a program. ‘Therefore, the command
processor treats a RESUME command as the invocation of a program rather
than the invocation of an internal PRIMDS oommand. ‘The special
processing this involves is usually unimportant, except when handling
errors and such,

Format of the Programming Instructions

The format of the programming instructions for a command or program is
important to the PRIMOS command processor, because it determines how
the command processor invokes the command or program. For commands and
programs that reside on disk, there are three formats:

e Executable Program Format (EPF) Runfiles
e Caommand Procedure Language (CPL) Programs
e Static-mode Runfiles

(A fourth format, the SBG runfile, is not recognized by the PRIMDS
command processor — it is recognized only by the SEG command, which
itself is a static-mode runfile residing in the QMDNCO UFD.)

Whether the PRIMOS command processor is called upon to execute a
command in the MDNCO UFD or elsewhere on disk, it uses suffix
searching to scan for the appropriate runfile, The suffixes ,RON,
.SAVE, and .CPL are tried, in that order, and then a search with no
suffix is tried. Based on the suffix that was in place when the
runfile was found, the command processor infers the format of the
runfile, as described in Chapter 1.

The most flexible format for programming instructions is the EFPF,
l;:ecause a program written as a program EPF may be a function. 1In fact,
it can determine whether it is being invoked as a function, and modify
its actions accordingly. (The mechanism by which it does this is
described in Chapter 3.)

4-3 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

In addition, a program EPF can modify CPL variables local to the CPL
program that.invoked it. Finally, a program EPF has the most control
over selecting command processing features and determining which
features are in use for a particular invocation.

The second most flexible format is the CPL program. A CPL program can
be written either as a program or as a function. However, CPL programs
cannot autamatically determine whether they are being invoked as
functions; but they can accept a command line option supplied by the
invoker to indicate which type of invocation is taking place.
Otherwise, a CPL program must assume either that it will always be
invoked as a program or that it will always be invoked as a function.

CPL programs can also choose how they will handle wildcards, as
wildcards are not processed for CPL programs,

The least flexible format is the static-mode program. A static-mode
program cannot be written as a function, If the name of a static-mode
program begins with NX$ or NWS$, this disables various combinations of
command processing features. This naming scheme represents the only
control that static-mode programs have over oommand processing
features; and it requires users to enter the NX$ or MW$ prefix when
entering the program name.

For commands internal to PRIMDS, there is only one format, and that is
the format of a subroutine, or procedure, that accepts a standardized
calling sequence as its arguments.

Functions

A function returns a value to the invoker of the function., This value
typically replaces the invocation of the function (in a CPL program
command line, for example).

Almost all Prime-supplied functions are commands, either internal to
PRIMOS or residing in OMDNCO. Functions that are commands are often
called command functions. Prior to Rev. 19.4, users oould write
functions only in CPL; as of Rev. 19.4, they may write functions as
program EPFs. ‘The term program function can be used to refer to a
function not supplied by Prime; however, this distinction is not
usually important for readers of this quide, Therefore, the terms
function and command function are used generically to refer to any
command or program that returns a function value when invoked as a
function.

The difference between a program that is a function and one that is not
is whether the program is designed to operate as a function and whether
the invoker of the program is invoking it as a function.

For example, the ABBREV -STATUS command, when used as a command, does

not operate as a function — it displays the pathname of the use.r's
abbreviation file, and the number of abbreviations defined in the file.

First Edition 4-4

J

)

INVOKING PROGRAMS FROM WITHIN PROGRAMS

OK, ABBREV -STATUS
Abbreviation file: UNGER>LOGIN.ABBREVS
Abbreviations: 183

OK,

When used as a function, however, ABBREV -STATUS modifies its behavior
so that it displays nothing to the terminal., Instead, it returns the
pathname of the user's abbreviation file as the value of its
invocation:

OK, TYPE Your abbreviation file is: [ABBREV -STATUS]
Your abbreviation file is: UNGER>LOGIN.ABBREVS
OK,

The displayed output came not from the ABBREV —STATUS invocation, but
fram the TYPE command.

The ABBREV -STATUS command is an example of a command that operates as
either a coomand or as a function, depending on how it is used.
Typically, however, a command or program always operates as one or the
other. For example, another internal command, RDY, operates only as a
command — when invoked as a function, it still behaves as a ocommand
and returns no value:

OK, TYPE Value of RDY command is: [RDY]
OK 14:33:39 243,024 11.354

Value of RDY command is:

CK,

The first line of displayed output came from the invocation of the RDY
command., The second line of output came from the invocation of the
TYPE command, which included a function invocation of RDY that returned
no result because RDY is not a function.

Conversely, a command or program may be constructed to run only as a
function. For example, when invoked as a command, the internal command
SUBSTR detects that it has not been invoked as a function, displays an
error message, and returns a positive severity code (producing the ER!

prampt) :

OK, SUBSTR TEST 2 2

May only be invoked as a command function. (SUBSTR)
ER!

4-5 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRCNMENT

DECIDING WHICH INTERFACE TO USE

To write a program, library, or subroutine that invokes another
command, program, or function, you must first decide which interface to
use:

e CPS$
® EPFSRUN

e EPFSINVK

e FRESRA

You make your decision based on what kind of program you wish to
invoke, and whether you wish to use command preprocessing features such
as variable expansion, wildcarding, and name generation.

e Use CP$ to invoke a PRIMOS command or a program, or to include
command preprocessing features.,

® Use EPFSRUN to invoke a program EPF.

e Use EPFSINVK to invoke a program EPF with more control over how
and when the EPF is set up.

e Use FRESRA only if you invoke a function and accept a returned
text string.

Typically, you choose only one of the CP$, EPFSRUN, and EPFSINVK
subroutines; these allow your program to invoke either a program or a
function, After calling a function, your program makes use of the
returned text string., Your program then calls the FRESRA subroutine to
free the memory used to store the returned text string, allowing the
memory to be reused.

When to Use CP$

You use the CP$ subroutine to invoke:
e Internal PRIMOS commands, such as ASSIGN
e External CPL programs
e External EPFs
® External static-mode programs

Except for external static-mode programs, any of the above may be
invoked as functions.

First Edition 4-6

INVOKING PROGRAMS FROM WITHIN PROGRAMS

Calling CP$ invokes the PRIMOS command processor, STDSCP. This same
command processor is invoked when the user enters a response to the OK,
pranpt issued by PRIMOS.

User-defined abbreviations are not expanded by CPS. Therefore, you can
reliably use CP$ in your program without ooncerning yourself with
user-defined abbreviations that might change the meaning of your
command lines. For example, calling CP$S to invoke the ASSIGN MTO
command always invokes that oommand, even if the user has defined
ASSIGN or MT0 as an abbreviation via the PRIMDS abbreviation facility.

The PRINDS command processor, invoked via CP$, determines what command
is being executed as follows:

1. The first token of the command line is parsed. This is the
name of the oommand being invoked. For example, consider the
command line:

COPY FRED>MEMD.12/31/84 *>MEMOS>MEMD.118

Here, the name of the command is (OPY.

2. The command name is checked against the list of internal PRIMDS
commands, One important internal PRIMOS command is RESUME; if
the command is RESUME, the program specified by the pathname
following the RESUME command is invoked.

If the command name is not RESUME, and is found in the list of
internal PRIMOS commands, the appropriate ocommand 1line
preprocessing (such as wildcarding) is performed, and the
internal PRIMOS subroutine that corresponds to the command name
is invoked. The command processor returns to the caller when
the internal PRIMOS subroutine has finished.

3. If the command name is not in the 1list of internal PRIMOS
commands, the ocommand processor searches the OMDNCO directory
for a program with the same name as the command, If found, the
program is executed as if it had been RESUMEAd.

When executing a program, the ocommand processor first performs the
appropriate command preprocessing (such as wildcarding), depending upon
the program type. If the program is an EPF, the command preprocessing
is determined by information that is placed within the EPF itself when
the EPF is built using BIND subcommands. For information on BIND
subcommands that describe the command preprocessing enviromment for an
EPF, see Chapter 2. ©See the PRIMS Camands Reference Guide for
information on command preprocessing for static-mode and CPL. programs,

4-7 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRCNMENT

Although command programs reside only in the CMDNCO directory, CPS$ can
be used to invoke programs residing anywhere on disk, by invoking the
internal command RESUME via CP$. For example, to invoke the program
ACQOUNTS_PAYABLE in the current directory, call CP$ with the following
command line:

RESUME ACCOUNTS_PAYABLE

When to Use EPFSRUN

You use EPFSRUN to invoke a program EPF, As with CP$, you pass the
command line to the target program, but no ocommand preprocessing is
performed on the command line. Therefore, use EPFSRUN when you do not
want any changes to be made to the command line being passed.

EPFSRUN handles all of the tasks needed to execute a program EPF,
including mapping the EPF to memory, allocating the linkage area,
initializing the linkage area, and optiomally removing the EPF from
memory when the invocation has been completed.

When to Use EPFSINVK

You use EPF$RUN to invoke a program EPF that has already been mapped to
memory, allocated, and initialized., As with CP$, you pass the command
line to the target program, but no command preprocessing is performed
on the ocommand line. Therefore, use EPFSINVK when you do not want any
changes to be made to the command line being passed.

The advantage of using EPFSINVK over EPFSRUN is that you have more
oontrol over the phases of EPF execution. However, you must call
several other subroutines, described in this chapter, to map the EPF to
memory, to allocate the linkage area, to initialize the 1linkage area,
and to remove the EPF from memory after invocation.

When to Use FRESRA

You use the FRESRA subroutine after using CPS$, EPFS$RUN, or EPFSINVK to
invoke a function only if the returned function pointer is not a null
pointer (segment number 7777). Your program should call FRESRA
sometime after it finishes using the returned function value; this may
be after it makes its own copy of the value, or after it finishes
analyzing the value. If you have used EPF$INVK to invoke the function,
it is not important whether your program calls FRE$RA before or after
calling EPFSDEL to remove the EFF,

First Edition 4-8

INVOKING PROGRAMS FROM WITHIN PROGRAMS

THE CPS SUBROUTINE

There are two ways of using CP$:

e Invoking commands or programs

e Invoking functions
The calling sequence for CP$ has six arguments. When not invoking a
function, you may wish to pass only three arguments; the remaining
three arguments are assigned default values before being passed to the
PRIMDS command processor, STDSCP.
Figure 4-1 illustrates the calling sequence for CPS. The next two

sections describe how to use CPS to invoke a ocommand, program, or
function,

Using CP$ to Invoke a Command or Program

To use the CPS subroutine to invoke an internal PRIMDS command or a
program, rather than a function, you typically need to supply only the
first three arguments — command-line, code, and severity-code — of
the calling sequence illustrated in Figure 4-1. If you wish to pass a
pointer to local CPL variables, then you must supply five or six
arquments in the calling sequence to include the cpl-local-vars-ptr
argument.

Before calling CP$, your program should initialize the severity-code
argument to 0, in case it is not set by the command or program being
invoked.

When your program calls CPS, the command processor attempts to execute
the command passed in command-line., If it fails to begin execution, a
standard PRIMOS error oode is returned in code. If it succeeds in
executing the command, 0 is returned in code, and the status of the
command itself is returned in severity-code.

Ultimately, when the program you invoke via a call to CP$ is a program
EPF, the severity-code argument to CP$ corresponds to and is set from
the severity-code argument in the calling sequence for a program EPF,
described in Chapter 3; CPL programs set this value by issuing a
&RETURN directive, and static-mode programs set this value by calling
the SETRCS subroutine.

Note

The returned value of severity-code is undefined if the
returned value of code is nonzero.

4-9 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

Invoke a Command, Program, or Function

[£]i]reserved |

f=0: Not a Function Call

f=1: A Function Call

i =0: Evaluate Variable & Function
References

i =1: Inhibit Evaluation of Variable
& Function References

Pointer to Local
CPL Variables, or

Command Line NULL ()
<32766 2
STRING BIT PTR

|

CP$ (command-line, code, severity-code, flags, cpl-local-vars-ptr, rtn-fcn-ptr)

HALF HALF PTR
INT INT
Status From Status From l
Attempt to B — ——» Invoked STRUC
Invoke Command Command
Halfword

0 0 (version)
1

Returned Value
<32766
String

Calling Sequence of CP$
Fiqure 4-1

First Edition 4-10

INVOKING PROGRAMS FRCM WITHIN PROGRAMS

The Caimmand Line: In command-line, simply pass the command line that
you would type as a user invoking the ocommand. The PRIMDS Commands
Reference Guide contains information on command formats, For example,
to assign a magnetic tape drive for a running program, you might have
your program call CP$ with the command line:

ASSIGN MI'0 -WAIT

The RESUME command is a special case, because it is an internal command
that runs an external program. Use the RESUME command to invoke a
program via CP§, For example, to run a program, you might have your
program call CPS with the command line:

RESUME MYPROG MEMD.03/08/05

Unless you place a tilde (7) in front of the command line, CP$ performs
certain kinds of command preprocessing on command-line before actually
invoking the internal command (although it never modifies command-line
itself). First, if the ocommand line contains one or more unquoted
command separator characters (;), CP$ splits up the command 1line into
several separately handled command lines.

Then, unless inhibited by the second bit of flags, CP$ resolves command
function references and variable references. Subsequent command
preprocessing depends on the command or program being invoked; for
example, ATTACH does not accept wildcards, but LIST QUOTA does. See
the PRIMDS Commands Reference Guide for information on command
preprocessing support by Prime ocommands; use the LIST EPF
—(OMMAND_PROCESSING command to determine what kind of command
preprocessing is performed for a particular program EPF being invoked.

Note

Placing a tilde (") in front of the command line as passed to
CP$ has the effect of preventing all forms of command
preprocessing, Therefore, calling CP$ with the command line

“SET_VAR .FOO %OPTION% is an option; [SET 1] is a function.

causes the global variable .FOO to be set to exactly the string
shown. Without the tilde, the variable $OPTION® and command
function reference [SET 1] would be evaluated, and the results
would be substituted in the command line (assuming the variable
and function references sucoeeded). 1In addition, the semicolon
after "option" would be treated as a command separator.

4-11 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

The Error Code: The code arqument, returned by CP$, indicates the
degree of success encountered by the command processor's attempt to
execute the command. For example, if the command is not found, the
error code eS$fntf (Not found) is returned in code.

Any nonzero value returned in oode indicates that all other output
arguments have undefined values, because they all depend upon the
successful invocation of the command.

See the section entitled Error Codes Fram CP$, later in this chapter,
for a partial list of error codes; see Volume 0 of this series for a
complete list of PRIMOS error codes.

The Severity Code: The severity-code argument, returned by the invoked
command via the command processor and CP$, indicates the degree of
success reported by the invoked command. For example, if you invoke
the ATTAH ocommand to attach to a nonexistent subdirectory, the error
code eSfntf (Not found) is returned in severity-code.

Note

The RESUME command is handled by the command processor in a
special way. 'The target of the RESUME command is the program
to be invoked. If the target program is not found, the error
code is returned in ocode, not in severity-code as for other
commands (such as ATTACH, QOPY, and so on). 'This allows the
calling program to distinguish between a missing program and a
program that cannot find the target specified on its command
line.

The Function-Call Bit: The first bit of the flags arqument specifies
whether the call to CP$ is to invoke a function (such as GVPATH or a
user-written function) or not, If flags is not supplied in the calling
sequence, the function-call bit defaults to 0, meaning that a function
invocation is not being made. If flags is supplied, set this bit to 0
to indicate that you are invoking a command or program rather than a
function. (The use of CP$ to invoke a function is described in the
next section.,)

The Inhibit-Evaluation Bit: The second bit of the flags argument
specifies whether command function references and variable references
in the command line are to be evaluated. If flags is not supplied in
the calling sequence, the inhibit-evaluation bit defaults to 0, meaning
that such references are to be evaluated. If flags is supplied, set
this bit to 0 if you wish such references to be evaluated, or set this
bit to 1 if you wish such references to be passed to the target program
instead of being evaluated.

First Edition 4-12

INVOKING PROGRAMS FROM WITHIN PROGRAMS

The CPLL. Local Variables Pointer: The cpl-local-vars-ptr argument
provides the necessary "toehold" for the target command or program to
set CPL variables local to the procedure that invoked your program,
Typically, you either do not supply this argument or you supply the
null pointer (NULL(), which is segment 7777 offset 0). If you do not
pass this argument, CP$ substitutes the null pointer when calling the
PRIMDS command processor, STDSCP.

If your program may be invoked by a CPL program, and if it is using CP$
to invoke a program that may need to set one or more CPL variables
local to the invoking CPL program, then your program should pass, in
cpl-local-vars-ptr, the corresponding pointer that was passed to its
main entrypoint in the command-information structure of the program EPF
calling sequence. (See Chapter 3 for more information on the
command-information structure.)

The Returned Function Value Pointer: The rtn—fen-ptr argument is not
used when invoking a command or program. It is used only when invoking
a function, that is, when bit 1 of the flags argument is set to 1, as
described in the next section,

Using CP$ to Invoke a Function

The CP$ subroutine may be used to invoke a command function that is
either an internal PRIMDS command function, such as DATE and GVPATH, or
a user-written ocommand function, written in CPL or as a program EPF,
Whether the command function being invoked is a Prime—-supplied command
function or a user-written command function, your program calls CP$ in
the same way.

To use the CP$ subroutine to invoke a function, have your program pass
all six arguments to CP$ as illustrated in Figure 4-1 earlier in this
chapter.

Before calling CP$, your program should initialize the severity-code
argument to 0 and the rtnmfon-ptr to the null pointer (NULL() in
PL/I-G), in case these argquments are not set by the function being
invoked.

When your program calls CP$, the command processor attempts to execute
the command passed in command-line. If it fails to begin execution, a
standard PRIMDS error oode is returned in code. If it succeeds in
executing the command, 0 is returned in code, the status of the command
itself is returned in severity-code, and a pointer to the returned text
string structure is returned in rtnfon-ptr.

Ultimately, when the program you invoke via a call to CP$ is a program

EPF, the rtn-fon-ptr argument to CP$ corresponds to the rtn-fcn-ptr
argument in the calling sequence for a program EPF, described in
Chapter 3; CPL programs set this value by issuing a &RESULT directive,

4-13 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

Notes

1. +The returned values of severity-code and rtn-fcn—ptr are
undefined if the returned value of code is nonzero,

2. When invoking a ocommand function, no wildcarding,
iteration, or treewalking is performed. In addition, the
command separator character, the semicolon (;) is not
honored; is treated like any other character.

The Command Line: In oommand-line, use the RESUME command, or the
command name itself, just as you would when invoking a command or
program, Do not enclose the command line in square brackets ([1) as
you would in a CPL program.

For example, to determine the user's abbreviation file, call CP$ with
the command line:

ABBREV -STATUS

The pathname of the abbreviation file, —OFF, or both, is returned in
the structure pointed to by rtn-fen—ptr, as described below.

To invoke a user-written command function, you might have your program
call CPS with the following command line:

RESUME PROGRAMS>GET._RECORD 1154 -DATABASE PAYROLL

Aqain, the information is returned in a structure pointed to by
rtn-fon-ptr.

Unless you place a tilde in front of the command line or set the second
bit of flags to 1, CP$ resolves (nested) command function references
and variable references.

The Error Code: The oode argument, returned by CPS$, has the same
meaning for function invocation as for command or program invocation,
described earlier in this chapter.

The Severity Code: The severity-code argument, returned by the invoked
function via the command processor and CP$, has <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>